langchain_community.retrievers.google_vertex_ai_search
.GoogleVertexAISearchRetrieverΒΆ
- class langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAISearchRetriever[source]ΒΆ
Bases:
BaseRetriever
,_BaseGoogleVertexAISearchRetriever
Google Vertex AI Search retriever.
For a detailed explanation of the Vertex AI Search concepts and configuration parameters, refer to the product documentation. https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
Initializes private fields.
- param credentials: Any = NoneΒΆ
The default custom credentials (google.auth.credentials.Credentials) to use when making API calls. If not provided, credentials will be ascertained from the environment.
- param data_store_id: str [Required]ΒΆ
Vertex AI Search data store ID.
- param engine_data_type: int = 0ΒΆ
Defines the Vertex AI Search data type 0 - Unstructured data 1 - Structured data 2 - Website data
- Constraints
minimum = 0
maximum = 2
- param filter: Optional[str] = NoneΒΆ
Filter expression.
- param get_extractive_answers: bool = FalseΒΆ
If True return Extractive Answers, otherwise return Extractive Segments or Snippets.
- param location_id: str = 'global'ΒΆ
Vertex AI Search data store location.
- param max_documents: int = 5ΒΆ
The maximum number of documents to return.
- Constraints
minimum = 1
maximum = 100
- param max_extractive_answer_count: int = 1ΒΆ
The maximum number of extractive answers returned in each search result. At most 5 answers will be returned for each SearchResult.
- Constraints
minimum = 1
maximum = 5
- param max_extractive_segment_count: int = 1ΒΆ
The maximum number of extractive segments returned in each search result. Currently one segment will be returned for each SearchResult.
- Constraints
minimum = 1
maximum = 1
- param metadata: Optional[Dict[str, Any]] = NoneΒΆ
Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- param project_id: str [Required]ΒΆ
Google Cloud Project ID.
- param query_expansion_condition: int = 1ΒΆ
Specification to determine under which conditions query expansion should occur. 0 - Unspecified query expansion condition. In this case, server behavior defaults
to disabled
- 1 - Disabled query expansion. Only the exact search query is used, even if
SearchResponse.total_size is zero.
2 - Automatic query expansion built by the Search API.
- Constraints
minimum = 0
maximum = 2
- param serving_config_id: str = 'default_config'ΒΆ
Vertex AI Search serving config ID.
- param spell_correction_mode: int = 2ΒΆ
Specification to determine under which conditions query expansion should occur. 0 - Unspecified spell correction mode. In this case, server behavior defaults
to auto.
- 1 - Suggestion only. Search API will try to find a spell suggestion if there is any
and put in the SearchResponse.corrected_query. The spell suggestion will not be used as the search query.
- 2 - Automatic spell correction built by the Search API.
Search will be based on the corrected query if found.
- Constraints
minimum = 0
maximum = 2
- param tags: Optional[List[str]] = NoneΒΆ
Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ΒΆ
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) List[Document] ΒΆ
Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks.
- Parameters
metadata β Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks.
- Returns
List of relevant documents
- async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) List[Document] ΒΆ
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) RunnableSerializable[Any, Any] ΒΆ
Assigns new fields to the dict output of this runnable. Returns a new runnable.
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ΒΆ
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] ΒΆ
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
- Parameters
input β The input to the runnable.
config β The config to use for the runnable.
diff β Whether to yield diffs between each step, or the current state.
with_streamed_output_list β Whether to yield the streamed_output list.
include_names β Only include logs with these names.
include_types β Only include logs with these types.
include_tags β Only include logs with these tags.
exclude_names β Exclude logs with these names.
exclude_types β Exclude logs with these types.
exclude_tags β Exclude logs with these tags.
- async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ΒΆ
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ΒΆ
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- bind(**kwargs: Any) Runnable[Input, Output] ΒΆ
Bind arguments to a Runnable, returning a new Runnable.
- config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel] ΒΆ
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
- Parameters
include β A list of fields to include in the config schema.
- Returns
A pydantic model that can be used to validate config.
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ΒΆ
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ΒΆ
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ΒΆ
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ΒΆ
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep β set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ΒΆ
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model ΒΆ
- get_graph(config: Optional[RunnableConfig] = None) Graph ΒΆ
Return a graph representation of this runnable.
- get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ΒΆ
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
- Parameters
config β A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate input.
- classmethod get_lc_namespace() List[str] ΒΆ
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [βlangchainβ, βllmsβ, βopenaiβ]
- get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) str ΒΆ
Get the name of the runnable.
- get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ΒΆ
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
- Parameters
config β A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate output.
- get_prompts(config: Optional[RunnableConfig] = None) List[BasePromptTemplate] ΒΆ
- get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) List[Document] ΒΆ
Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks.
- Parameters
metadata β Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks.
- Returns
List of relevant documents
- invoke(input: str, config: Optional[RunnableConfig] = None) List[Document] ΒΆ
Transform a single input into an output. Override to implement.
- Parameters
input β The input to the runnable.
config β A config to use when invoking the runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
- Returns
The output of the runnable.
- classmethod is_lc_serializable() bool ΒΆ
Is this class serializable?
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ΒΆ
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str] ΒΆ
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- map() Runnable[List[Input], List[Output]] ΒΆ
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- classmethod parse_obj(obj: Any) Model ΒΆ
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- pick(keys: Union[str, List[str]]) RunnableSerializable[Any, Any] ΒΆ
Pick keys from the dict output of this runnable. Returns a new runnable.
- pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) RunnableSerializable[Input, Other] ΒΆ
Compose this runnable with another object to create a RunnableSequence.
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ΒΆ
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ΒΆ
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ΒΆ
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ΒΆ
- to_json_not_implemented() SerializedNotImplemented ΒΆ
- transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ΒΆ
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
- classmethod update_forward_refs(**localns: Any) None ΒΆ
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ΒΆ
- with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output] ΒΆ
Bind config to a Runnable, returning a new Runnable.
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) RunnableWithFallbacksT[Input, Output] ΒΆ
Add fallbacks to a runnable, returning a new Runnable.
- Parameters
fallbacks β A sequence of runnables to try if the original runnable fails.
exceptions_to_handle β A tuple of exception types to handle.
- Returns
A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
- with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output] ΒΆ
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] ΒΆ
Create a new Runnable that retries the original runnable on exceptions.
- Parameters
retry_if_exception_type β A tuple of exception types to retry on
wait_exponential_jitter β Whether to add jitter to the wait time between retries
stop_after_attempt β The maximum number of attempts to make before giving up
- Returns
A new Runnable that retries the original runnable on exceptions.
- with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output] ΒΆ
Bind input and output types to a Runnable, returning a new Runnable.
- property InputType: Type[langchain_core.runnables.utils.Input]ΒΆ
The type of input this runnable accepts specified as a type annotation.
- property OutputType: Type[langchain_core.runnables.utils.Output]ΒΆ
The type of output this runnable produces specified as a type annotation.
- property client_options: ClientOptionsΒΆ
- property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]ΒΆ
List configurable fields for this runnable.
- property input_schema: Type[pydantic.main.BaseModel]ΒΆ
The type of input this runnable accepts specified as a pydantic model.
- property lc_attributes: DictΒΆ
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]ΒΆ
A map of constructor argument names to secret ids.
- For example,
{βopenai_api_keyβ: βOPENAI_API_KEYβ}
- name: Optional[str] = NoneΒΆ
The name of the runnable. Used for debugging and tracing.
- property output_schema: Type[pydantic.main.BaseModel]ΒΆ
The type of output this runnable produces specified as a pydantic model.