"""Retriever wrapper for Google Vertex AI Search."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import get_from_dict_or_env
from langchain_community.utilities.vertexai import get_client_info
if TYPE_CHECKING:
    from google.api_core.client_options import ClientOptions
    from google.cloud.discoveryengine_v1beta import (
        ConversationalSearchServiceClient,
        SearchRequest,
        SearchResult,
        SearchServiceClient,
    )
class _BaseGoogleVertexAISearchRetriever(BaseModel):
    project_id: str
    """Google Cloud Project ID."""
    data_store_id: str
    """Vertex AI Search data store ID."""
    location_id: str = "global"
    """Vertex AI Search data store location."""
    serving_config_id: str = "default_config"
    """Vertex AI Search serving config ID."""
    credentials: Any = None
    """The default custom credentials (google.auth.credentials.Credentials) to use
    when making API calls. If not provided, credentials will be ascertained from
    the environment."""
    engine_data_type: int = Field(default=0, ge=0, le=2)
    """ Defines the Vertex AI Search data type
    0 - Unstructured data 
    1 - Structured data
    2 - Website data
    """
    @root_validator(pre=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validates the environment."""
        try:
            from google.cloud import discoveryengine_v1beta  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "google.cloud.discoveryengine is not installed."
                "Please install it with pip install "
                "google-cloud-discoveryengine>=0.11.0"
            ) from exc
        try:
            from google.api_core.exceptions import InvalidArgument  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "google.api_core.exceptions is not installed. "
                "Please install it with pip install google-api-core"
            ) from exc
        values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")
        try:
            # For backwards compatibility
            search_engine_id = get_from_dict_or_env(
                values, "search_engine_id", "SEARCH_ENGINE_ID"
            )
            if search_engine_id:
                import warnings
                warnings.warn(
                    "The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.",  # noqa: E501
                    DeprecationWarning,
                )
                values["data_store_id"] = search_engine_id
        except:  # noqa: E722
            pass
        values["data_store_id"] = get_from_dict_or_env(
            values, "data_store_id", "DATA_STORE_ID"
        )
        return values
    @property
    def client_options(self) -> "ClientOptions":
        from google.api_core.client_options import ClientOptions
        return ClientOptions(
            api_endpoint=f"{self.location_id}-discoveryengine.googleapis.com"
            if self.location_id != "global"
            else None
        )
    def _convert_structured_search_response(
        self, results: Sequence[SearchResult]
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        import json
        from google.protobuf.json_format import MessageToDict
        documents: List[Document] = []
        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            documents.append(
                Document(
                    page_content=json.dumps(document_dict.get("struct_data", {})),
                    metadata={"id": document_dict["id"], "name": document_dict["name"]},
                )
            )
        return documents
    def _convert_unstructured_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        from google.protobuf.json_format import MessageToDict
        documents: List[Document] = []
        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue
            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]
            if chunk_type not in derived_struct_data:
                continue
            for chunk in derived_struct_data[chunk_type]:
                doc_metadata["source"] = derived_struct_data.get("link", "")
                if chunk_type == "extractive_answers":
                    doc_metadata["source"] += f":{chunk.get('pageNumber', '')}"
                documents.append(
                    Document(
                        page_content=chunk.get("content", ""), metadata=doc_metadata
                    )
                )
        return documents
    def _convert_website_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        from google.protobuf.json_format import MessageToDict
        documents: List[Document] = []
        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue
            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]
            doc_metadata["source"] = derived_struct_data.get("link", "")
            if chunk_type not in derived_struct_data:
                continue
            text_field = "snippet" if chunk_type == "snippets" else "content"
            for chunk in derived_struct_data[chunk_type]:
                documents.append(
                    Document(
                        page_content=chunk.get(text_field, ""), metadata=doc_metadata
                    )
                )
        if not documents:
            print(f"No {chunk_type} could be found.")
            if chunk_type == "extractive_answers":
                print(
                    "Make sure that your data store is using Advanced Website "
                    "Indexing.\n"
                    "https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing"  # noqa: E501
                )
        return documents
[docs]class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetriever):
    """`Google Vertex AI Search` retriever.
    For a detailed explanation of the Vertex AI Search concepts
    and configuration parameters, refer to the product documentation.
    https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
    """
    filter: Optional[str] = None
    """Filter expression."""
    get_extractive_answers: bool = False
    """If True return Extractive Answers, otherwise return Extractive Segments or Snippets."""  # noqa: E501
    max_documents: int = Field(default=5, ge=1, le=100)
    """The maximum number of documents to return."""
    max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
    """The maximum number of extractive answers returned in each search result.
    At most 5 answers will be returned for each SearchResult.
    """
    max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
    """The maximum number of extractive segments returned in each search result.
    Currently one segment will be returned for each SearchResult.
    """
    query_expansion_condition: int = Field(default=1, ge=0, le=2)
    """Specification to determine under which conditions query expansion should occur.
    0 - Unspecified query expansion condition. In this case, server behavior defaults 
        to disabled
    1 - Disabled query expansion. Only the exact search query is used, even if 
        SearchResponse.total_size is zero.
    2 - Automatic query expansion built by the Search API.
    """
    spell_correction_mode: int = Field(default=2, ge=0, le=2)
    """Specification to determine under which conditions query expansion should occur.
    0 - Unspecified spell correction mode. In this case, server behavior defaults 
        to auto.
    1 - Suggestion only. Search API will try to find a spell suggestion if there is any
        and put in the `SearchResponse.corrected_query`.
        The spell suggestion will not be used as the search query.
    2 - Automatic spell correction built by the Search API.
        Search will be based on the corrected query if found.
    """
    _client: SearchServiceClient
    _serving_config: str
    class Config:
        """Configuration for this pydantic object."""
        extra = Extra.ignore
        arbitrary_types_allowed = True
        underscore_attrs_are_private = True
    def __init__(self, **kwargs: Any) -> None:
        """Initializes private fields."""
        try:
            from google.cloud.discoveryengine_v1beta import SearchServiceClient
        except ImportError as exc:
            raise ImportError(
                "google.cloud.discoveryengine is not installed."
                "Please install it with pip install google-cloud-discoveryengine"
            ) from exc
        super().__init__(**kwargs)
        #  For more information, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
        self._client = SearchServiceClient(
            credentials=self.credentials,
            client_options=self.client_options,
            client_info=get_client_info(module="vertex-ai-search"),
        )
        self._serving_config = self._client.serving_config_path(
            project=self.project_id,
            location=self.location_id,
            data_store=self.data_store_id,
            serving_config=self.serving_config_id,
        )
    def _create_search_request(self, query: str) -> SearchRequest:
        """Prepares a SearchRequest object."""
        from google.cloud.discoveryengine_v1beta import SearchRequest
        query_expansion_spec = SearchRequest.QueryExpansionSpec(
            condition=self.query_expansion_condition,
        )
        spell_correction_spec = SearchRequest.SpellCorrectionSpec(
            mode=self.spell_correction_mode
        )
        if self.engine_data_type == 0:
            if self.get_extractive_answers:
                extractive_content_spec = (
                    SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                        max_extractive_answer_count=self.max_extractive_answer_count,
                    )
                )
            else:
                extractive_content_spec = (
                    SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                        max_extractive_segment_count=self.max_extractive_segment_count,
                    )
                )
            content_search_spec = SearchRequest.ContentSearchSpec(
                extractive_content_spec=extractive_content_spec
            )
        elif self.engine_data_type == 1:
            content_search_spec = None
        elif self.engine_data_type == 2:
            content_search_spec = SearchRequest.ContentSearchSpec(
                extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                    max_extractive_answer_count=self.max_extractive_answer_count,
                ),
                snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec(
                    return_snippet=True
                ),
            )
        else:
            raise NotImplementedError(
                "Only data store type 0 (Unstructured), 1 (Structured),"
                "or 2 (Website) are supported currently."
                + f" Got {self.engine_data_type}"
            )
        return SearchRequest(
            query=query,
            filter=self.filter,
            serving_config=self._serving_config,
            page_size=self.max_documents,
            content_search_spec=content_search_spec,
            query_expansion_spec=query_expansion_spec,
            spell_correction_spec=spell_correction_spec,
        )
    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """Get documents relevant for a query."""
        from google.api_core.exceptions import InvalidArgument
        search_request = self._create_search_request(query)
        try:
            response = self._client.search(search_request)
        except InvalidArgument as exc:
            raise type(exc)(
                exc.message
                + " This might be due to engine_data_type not set correctly."
            )
        if self.engine_data_type == 0:
            chunk_type = (
                "extractive_answers"
                if self.get_extractive_answers
                else "extractive_segments"
            )
            documents = self._convert_unstructured_search_response(
                response.results, chunk_type
            )
        elif self.engine_data_type == 1:
            documents = self._convert_structured_search_response(response.results)
        elif self.engine_data_type == 2:
            chunk_type = (
                "extractive_answers" if self.get_extractive_answers else "snippets"
            )
            documents = self._convert_website_search_response(
                response.results, chunk_type
            )
        else:
            raise NotImplementedError(
                "Only data store type 0 (Unstructured), 1 (Structured),"
                "or 2 (Website) are supported currently."
                + f" Got {self.engine_data_type}"
            )
        return documents 
[docs]class GoogleVertexAIMultiTurnSearchRetriever(
    BaseRetriever, _BaseGoogleVertexAISearchRetriever
):
    """`Google Vertex AI Search` retriever for multi-turn conversations."""
    conversation_id: str = "-"
    """Vertex AI Search Conversation ID."""
    _client: ConversationalSearchServiceClient
    _serving_config: str
    class Config:
        """Configuration for this pydantic object."""
        extra = Extra.ignore
        arbitrary_types_allowed = True
        underscore_attrs_are_private = True
    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)
        from google.cloud.discoveryengine_v1beta import (
            ConversationalSearchServiceClient,
        )
        self._client = ConversationalSearchServiceClient(
            credentials=self.credentials,
            client_options=self.client_options,
            client_info=get_client_info(module="vertex-ai-search"),
        )
        self._serving_config = self._client.serving_config_path(
            project=self.project_id,
            location=self.location_id,
            data_store=self.data_store_id,
            serving_config=self.serving_config_id,
        )
        if self.engine_data_type == 1:
            raise NotImplementedError(
                "Data store type 1 (Structured)"
                "is not currently supported for multi-turn search."
                + f" Got {self.engine_data_type}"
            )
    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """Get documents relevant for a query."""
        from google.cloud.discoveryengine_v1beta import (
            ConverseConversationRequest,
            TextInput,
        )
        request = ConverseConversationRequest(
            name=self._client.conversation_path(
                self.project_id,
                self.location_id,
                self.data_store_id,
                self.conversation_id,
            ),
            serving_config=self._serving_config,
            query=TextInput(input=query),
        )
        response = self._client.converse_conversation(request)
        if self.engine_data_type == 2:
            return self._convert_website_search_response(
                response.search_results, "extractive_answers"
            )
        return self._convert_unstructured_search_response(
            response.search_results, "extractive_answers"
        ) 
[docs]class GoogleCloudEnterpriseSearchRetriever(GoogleVertexAISearchRetriever):
    """`Google Vertex Search API` retriever alias for backwards compatibility.
    DEPRECATED: Use `GoogleVertexAISearchRetriever` instead.
    """
    def __init__(self, **data: Any):
        import warnings
        warnings.warn(
            "GoogleCloudEnterpriseSearchRetriever is deprecated, use GoogleVertexAISearchRetriever",  # noqa: E501
            DeprecationWarning,
        )
        super().__init__(**data)