langchain_experimental.generative_agents.generative_agent
.GenerativeAgent¶
- class langchain_experimental.generative_agents.generative_agent.GenerativeAgent[source]¶
Bases:
BaseModel
An Agent as a character with memory and innate characteristics.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param age: Optional[int] = None¶
The optional age of the character.
- param daily_summaries: List[str] [Optional]¶
Summary of the events in the plan that the agent took.
- param last_refreshed: datetime.datetime [Optional]¶
The last time the character’s summary was regenerated.
- param llm: langchain_core.language_models.base.BaseLanguageModel [Required]¶
The underlying language model.
- param memory: langchain_experimental.generative_agents.memory.GenerativeAgentMemory [Required]¶
The memory object that combines relevance, recency, and ‘importance’.
- param name: str [Required]¶
The character’s name.
- param status: str [Required]¶
The traits of the character you wish not to change.
- param summary: str = ''¶
Stateful self-summary generated via reflection on the character’s memory.
- param summary_refresh_seconds: int = 3600¶
How frequently to re-generate the summary.
- param traits: str = 'N/A'¶
Permanent traits to ascribe to the character.
- param verbose: bool = False¶
- chain(prompt: PromptTemplate) LLMChain [source]¶
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model ¶
- generate_dialogue_response(observation: str, now: Optional[datetime] = None) Tuple[bool, str] [source]¶
React to a given observation.
- generate_reaction(observation: str, now: Optional[datetime] = None) Tuple[bool, str] [source]¶
React to a given observation.
- get_full_header(force_refresh: bool = False, now: Optional[datetime] = None) str [source]¶
Return a full header of the agent’s status, summary, and current time.
- get_summary(force_refresh: bool = False, now: Optional[datetime] = None) str [source]¶
Return a descriptive summary of the agent.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
Summarize memories that are most relevant to an observation.
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶