langchain_experimental.generative_agents.memory
.GenerativeAgentMemory¶
- class langchain_experimental.generative_agents.memory.GenerativeAgentMemory[source]¶
Bases:
BaseMemory
Memory for the generative agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param add_memory_key: str = 'add_memory'¶
- param aggregate_importance: float = 0.0¶
Track the sum of the ‘importance’ of recent memories.
Triggers reflection when it reaches reflection_threshold.
- param current_plan: List[str] = []¶
The current plan of the agent.
- param importance_weight: float = 0.15¶
How much weight to assign the memory importance.
- param llm: langchain_core.language_models.base.BaseLanguageModel [Required]¶
The core language model.
- param max_tokens_limit: int = 1200¶
- param memory_retriever: langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever [Required]¶
The retriever to fetch related memories.
- param most_recent_memories_key: str = 'most_recent_memories'¶
- param most_recent_memories_token_key: str = 'recent_memories_token'¶
- param now_key: str = 'now'¶
- param queries_key: str = 'queries'¶
- param reflecting: bool = False¶
- param reflection_threshold: Optional[float] = None¶
When aggregate_importance exceeds reflection_threshold, stop to reflect.
- param relevant_memories_key: str = 'relevant_memories'¶
- param relevant_memories_simple_key: str = 'relevant_memories_simple'¶
- param verbose: bool = False¶
- add_memories(memory_content: str, now: Optional[datetime] = None) List[str] [source]¶
Add an observations or memories to the agent’s memory.
- add_memory(memory_content: str, now: Optional[datetime] = None) List[str] [source]¶
Add an observation or memory to the agent’s memory.
- chain(prompt: PromptTemplate) LLMChain [source]¶
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- fetch_memories(observation: str, now: Optional[datetime] = None) List[Document] [source]¶
Fetch related memories.
- classmethod from_orm(obj: Any) Model ¶
- classmethod get_lc_namespace() List[str] ¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]
- classmethod is_lc_serializable() bool ¶
Is this class serializable?
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str] ¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, str] [source]¶
Return key-value pairs given the text input to the chain.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- pause_to_reflect(now: Optional[datetime] = None) List[str] [source]¶
Reflect on recent observations and generate ‘insights’.
- save_context(inputs: Dict[str, Any], outputs: Dict[str, Any]) None [source]¶
Save the context of this model run to memory.
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
- to_json_not_implemented() SerializedNotImplemented ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶
- property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
- For example,
{“openai_api_key”: “OPENAI_API_KEY”}
- property memory_variables: List[str]¶
Input keys this memory class will load dynamically.