langchain_community.vectorstores.zilliz
.Zilliz¶
- class langchain_community.vectorstores.zilliz.Zilliz(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', collection_description: str = '', collection_properties: Optional[dict[str, Any]] = None, connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False, auto_id: bool = False, *, primary_field: str = 'pk', text_field: str = 'text', vector_field: str = 'vector', metadata_field: Optional[str] = None, partition_key_field: Optional[str] = None, partition_names: Optional[list] = None, replica_number: int = 1, timeout: Optional[float] = None)[source]¶
Zilliz vector store.
You need to have pymilvus installed and a running Zilliz database.
See the following documentation for how to run a Zilliz instance: https://docs.zilliz.com/docs/create-cluster
IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
- Parameters
embedding_function (Embeddings) – Function used to embed the text.
collection_name (str) – Which Zilliz collection to use. Defaults to “LangChainCollection”.
connection_args (Optional[dict[str, any]]) – The connection args used for this class comes in the form of a dict.
consistency_level (str) – The consistency level to use for a collection. Defaults to “Session”.
index_params (Optional[dict]) – Which index params to use. Defaults to HNSW/AUTOINDEX depending on service.
search_params (Optional[dict]) – Which search params to use. Defaults to default of index.
drop_old (Optional[bool]) – Whether to drop the current collection. Defaults to False.
auto_id (bool) – Whether to enable auto id for primary key. Defaults to False. If False, you needs to provide text ids (string less than 65535 bytes). If True, Milvus will generate unique integers as primary keys.
collection_description (str) –
collection_properties (Optional[dict[str, Any]]) –
primary_field (str) –
text_field (str) –
vector_field (str) –
metadata_field (Optional[str]) –
partition_key_field (Optional[str]) –
partition_names (Optional[list]) –
replica_number (int) –
timeout (Optional[float]) –
The connection args used for this class comes in the form of a dict, here are a few of the options:
- address (str): The actual address of Zilliz
instance. Example address: “localhost:19530”
- uri (str): The uri of Zilliz instance. Example uri:
- host (str): The host of Zilliz instance. Default at “localhost”,
PyMilvus will fill in the default host if only port is provided.
- port (str/int): The port of Zilliz instance. Default at 19530, PyMilvus
will fill in the default port if only host is provided.
- user (str): Use which user to connect to Zilliz instance. If user and
password are provided, we will add related header in every RPC call.
- password (str): Required when user is provided. The password
corresponding to the user.
- token (str): API key, for serverless clusters which can be used as
replacements for user and password.
secure (bool): Default is false. If set to true, tls will be enabled. client_key_path (str): If use tls two-way authentication, need to
write the client.key path.
- client_pem_path (str): If use tls two-way authentication, need to
write the client.pem path.
- ca_pem_path (str): If use tls two-way authentication, need to write
the ca.pem path.
- server_pem_path (str): If use tls one-way authentication, need to
write the server.pem path.
server_name (str): If use tls, need to write the common name.
Example
from langchain_community.vectorstores import Zilliz from langchain_community.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings() # Connect to a Zilliz instance milvus_store = Milvus(
embedding_function = embedding, collection_name = “LangChainCollection”, connection_args = {
“uri”: “https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com”, “user”: “temp”, “password”: “temp”, “token”: “temp”, # API key as replacements for user and password “secure”: True
} drop_old: True,
)
- Raises
ValueError – If the pymilvus python package is not installed.
- Parameters
embedding_function (Embeddings) –
collection_name (str) –
collection_description (str) –
collection_properties (Optional[dict[str, Any]]) –
connection_args (Optional[dict[str, Any]]) –
consistency_level (str) –
index_params (Optional[dict]) –
search_params (Optional[dict]) –
drop_old (Optional[bool]) –
auto_id (bool) –
primary_field (str) –
text_field (str) –
vector_field (str) –
metadata_field (Optional[str]) –
partition_key_field (Optional[str]) –
partition_names (Optional[list]) –
replica_number (int) –
timeout (Optional[float]) –
Initialize the Milvus vector store.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(embedding_function[, ...])Initialize the Milvus vector store.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, timeout, ...])Insert text data into Milvus.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids, expr])Delete by vector ID or boolean expression.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Create a Zilliz collection, indexes it with HNSW, and insert data.
get_pks
(expr, **kwargs)Get primary keys with expression
max_marginal_relevance_search
(query[, k, ...])Perform a search and return results that are reordered by MMR.
Perform a search and return results that are reordered by MMR.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, param, expr, ...])Perform a similarity search against the query string.
similarity_search_by_vector
(embedding[, k, ...])Perform a similarity search against the query string.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Perform a search on a query string and return results with score.
similarity_search_with_score_by_vector
(embedding)Perform a search on a query string and return results with score.
upsert
([ids, documents])Update/Insert documents to the vectorstore.
- __init__(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', collection_description: str = '', collection_properties: Optional[dict[str, Any]] = None, connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False, auto_id: bool = False, *, primary_field: str = 'pk', text_field: str = 'text', vector_field: str = 'vector', metadata_field: Optional[str] = None, partition_key_field: Optional[str] = None, partition_names: Optional[list] = None, replica_number: int = 1, timeout: Optional[float] = None)¶
Initialize the Milvus vector store.
- Parameters
embedding_function (Embeddings) –
collection_name (str) –
collection_description (str) –
collection_properties (Optional[dict[str, Any]]) –
connection_args (Optional[dict[str, Any]]) –
consistency_level (str) –
index_params (Optional[dict]) –
search_params (Optional[dict]) –
drop_old (Optional[bool]) –
auto_id (bool) –
primary_field (str) –
text_field (str) –
vector_field (str) –
metadata_field (Optional[str]) –
partition_key_field (Optional[str]) –
partition_names (Optional[list]) –
replica_number (int) –
timeout (Optional[float]) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, *, ids: Optional[List[str]] = None, **kwargs: Any) List[str] ¶
Insert text data into Milvus.
Inserting data when the collection has not be made yet will result in creating a new Collection. The data of the first entity decides the schema of the new collection, the dim is extracted from the first embedding and the columns are decided by the first metadata dict. Metadata keys will need to be present for all inserted values. At the moment there is no None equivalent in Milvus.
- Parameters
texts (Iterable[str]) – The texts to embed, it is assumed that they all fit in memory.
metadatas (Optional[List[dict]]) – Metadata dicts attached to each of the texts. Defaults to None.
False. (should be less than 65535 bytes. Required and work when auto_id is) –
timeout (Optional[int]) – Timeout for each batch insert. Defaults to None.
batch_size (int, optional) – Batch size to use for insertion. Defaults to 1000.
ids (Optional[List[str]]) – List of text ids. The length of each item
kwargs (Any) –
- Raises
MilvusException – Failure to add texts
- Returns
The resulting keys for each inserted element.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, expr: Optional[str] = None, **kwargs: str)¶
Delete by vector ID or boolean expression. Refer to [Milvus documentation](https://milvus.io/docs/delete_data.md) for notes and examples of expressions.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
expr (Optional[str]) – Boolean expression that specifies the entities to delete.
kwargs (str) – Other parameters in Milvus delete api.
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: Optional[Dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, *, ids: Optional[List[str]] = None, auto_id: bool = False, **kwargs: Any) Zilliz [source]¶
Create a Zilliz collection, indexes it with HNSW, and insert data.
- Parameters
texts (List[str]) – Text data.
embedding (Embeddings) – Embedding function.
metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None.
collection_name (str, optional) – Collection name to use. Defaults to “LangChainCollection”.
connection_args (dict[str, Any], optional) – Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION.
consistency_level (str, optional) – Which consistency level to use. Defaults to “Session”.
index_params (Optional[dict], optional) – Which index_params to use. Defaults to None.
search_params (Optional[dict], optional) – Which search params to use. Defaults to None.
drop_old (Optional[bool], optional) – Whether to drop the collection with that name if it exists. Defaults to False.
ids (Optional[List[str]]) – List of text ids.
auto_id (bool) – Whether to enable auto id for primary key. Defaults to False. If False, you needs to provide text ids (string less than 65535 bytes). If True, Milvus will generate unique integers as primary keys.
kwargs (Any) –
- Returns
Zilliz Vector Store
- Return type
- get_pks(expr: str, **kwargs: Any) Optional[List[int]] ¶
Get primary keys with expression
- Parameters
expr (str) – Expression - E.g: “id in [1, 2]”, or “title LIKE ‘Abc%’”
kwargs (Any) –
- Returns
List of IDs (Primary Keys)
- Return type
List[int]
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] ¶
Perform a search and return results that are reordered by MMR.
- Parameters
query (str) – The text being searched.
k (int, optional) – How many results to give. Defaults to 4.
fetch_k (int, optional) – Total results to select k from. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5
param (dict, optional) – The search params for the specified index. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Returns
Document results for search.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] ¶
Perform a search and return results that are reordered by MMR.
- Parameters
embedding (str) – The embedding vector being searched.
k (int, optional) – How many results to give. Defaults to 4.
fetch_k (int, optional) – Total results to select k from. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5
param (dict, optional) – The search params for the specified index. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Returns
Document results for search.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] ¶
Perform a similarity search against the query string.
- Parameters
query (str) – The text to search.
k (int, optional) – How many results to return. Defaults to 4.
param (dict, optional) – The search params for the index type. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Returns
Document results for search.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] ¶
Perform a similarity search against the query string.
- Parameters
embedding (List[float]) – The embedding vector to search.
k (int, optional) – How many results to return. Defaults to 4.
param (dict, optional) – The search params for the index type. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Returns
Document results for search.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Tuple[Document, float]] ¶
Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
- Parameters
query (str) – The text being searched.
k (int, optional) – The amount of results to return. Defaults to 4.
param (dict) – The search params for the specified index. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Return type
List[float], List[Tuple[Document, any, any]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Tuple[Document, float]] ¶
Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
- Parameters
embedding (List[float]) – The embedding vector being searched.
k (int, optional) – The amount of results to return. Defaults to 4.
param (dict) – The search params for the specified index. Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error. Defaults to None.
kwargs (Any) – Collection.search() keyword arguments.
- Returns
Result doc and score.
- Return type
List[Tuple[Document, float]]
- upsert(ids: Optional[List[str]] = None, documents: Optional[List[Document]] = None, **kwargs: Any) Optional[List[str]] ¶
Update/Insert documents to the vectorstore.
- Parameters
ids (Optional[List[str]]) – IDs to update - Let’s call get_pks to get ids with expression
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) –
- Returns
IDs of the added texts.
- Return type
List[str]