langchain_community.vectorstores.epsilla
.Epsilla¶
- class langchain_community.vectorstores.epsilla.Epsilla(client: Any, embeddings: Embeddings, db_path: Optional[str] = '/tmp/langchain-epsilla', db_name: Optional[str] = 'langchain_store')[source]¶
Wrapper around Epsilla vector database.
As a prerequisite, you need to install
pyepsilla
package and have a running Epsilla vector database (for example, through our docker image) See the following documentation for how to run an Epsilla vector database: https://epsilla-inc.gitbook.io/epsilladb/quick-start- Parameters
client (Any) – Epsilla client to connect to.
embeddings (Embeddings) – Function used to embed the texts.
db_path (Optional[str]) – The path where the database will be persisted. Defaults to “/tmp/langchain-epsilla”.
db_name (Optional[str]) – Give a name to the loaded database. Defaults to “langchain_store”.
Example
from langchain_community.vectorstores import Epsilla from pyepsilla import vectordb client = vectordb.Client() embeddings = OpenAIEmbeddings() db_path = "/tmp/vectorstore" db_name = "langchain_store" epsilla = Epsilla(client, embeddings, db_path, db_name)
Initialize with necessary components.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(client, embeddings[, db_path, db_name])Initialize with necessary components.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ...])Embed texts and add them to the database.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
clear_data
([collection_name])Clear data in a collection.
delete
([ids])Delete by vector ID or other criteria.
from_documents
(documents, embedding[, ...])Create an Epsilla vectorstore from a list of documents.
from_texts
(texts, embedding[, metadatas, ...])Create an Epsilla vectorstore from raw documents.
get
([collection_name, response_fields])Get the collection.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, collection_name])Return the documents that are semantically most relevant to the query.
similarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(*args, **kwargs)Run similarity search with distance.
use_collection
(collection_name)Set default collection to use.
- __init__(client: Any, embeddings: Embeddings, db_path: Optional[str] = '/tmp/langchain-epsilla', db_name: Optional[str] = 'langchain_store')[source]¶
Initialize with necessary components.
- Parameters
client (Any) –
embeddings (Embeddings) –
db_path (Optional[str]) –
db_name (Optional[str]) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
documents (List[Document]) –
kwargs (Any) –
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, collection_name: Optional[str] = '', drop_old: Optional[bool] = False, **kwargs: Any) List[str] [source]¶
Embed texts and add them to the database.
- Parameters
texts (Iterable[str]) – The texts to embed.
metadatas (Optional[List[dict]]) – Metadata dicts attached to each of the texts. Defaults to None.
collection_name (Optional[str]) – Which collection to use. Defaults to “langchain_collection”. If provided, default collection name will be set as well.
drop_old (Optional[bool]) – Whether to drop the previous collection and create a new one. Defaults to False.
kwargs (Any) –
- Returns
List of ids of the added texts.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Return type
VST
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
VST
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
kwargs (Any) –
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- Parameters
query (str) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) –
k (int) –
kwargs (Any) –
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- Parameters
args (Any) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- clear_data(collection_name: str = '') None [source]¶
Clear data in a collection.
- Parameters
collection_name (Optional[str]) – The name of the collection. If not provided, the default collection will be used.
- Return type
None
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, client: Any = None, db_path: Optional[str] = '/tmp/langchain-epsilla', db_name: Optional[str] = 'langchain_store', collection_name: Optional[str] = 'langchain_collection', drop_old: Optional[bool] = False, **kwargs: Any) Epsilla [source]¶
Create an Epsilla vectorstore from a list of documents.
- Parameters
texts (List[str]) – List of text data to be inserted.
embeddings (Embeddings) – Embedding function.
client (pyepsilla.vectordb.Client) – Epsilla client to connect to.
metadatas (Optional[List[dict]]) – Metadata for each text. Defaults to None.
db_path (Optional[str]) – The path where the database will be persisted. Defaults to “/tmp/langchain-epsilla”.
db_name (Optional[str]) – Give a name to the loaded database. Defaults to “langchain_store”.
collection_name (Optional[str]) – Which collection to use. Defaults to “langchain_collection”. If provided, default collection name will be set as well.
drop_old (Optional[bool]) – Whether to drop the previous collection and create a new one. Defaults to False.
documents (List[Document]) –
embedding (Embeddings) –
kwargs (Any) –
- Returns
Epsilla vector store.
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Any = None, db_path: Optional[str] = '/tmp/langchain-epsilla', db_name: Optional[str] = 'langchain_store', collection_name: Optional[str] = 'langchain_collection', drop_old: Optional[bool] = False, **kwargs: Any) Epsilla [source]¶
Create an Epsilla vectorstore from raw documents.
- Parameters
texts (List[str]) – List of text data to be inserted.
embeddings (Embeddings) – Embedding function.
client (pyepsilla.vectordb.Client) – Epsilla client to connect to.
metadatas (Optional[List[dict]]) – Metadata for each text. Defaults to None.
db_path (Optional[str]) – The path where the database will be persisted. Defaults to “/tmp/langchain-epsilla”.
db_name (Optional[str]) – Give a name to the loaded database. Defaults to “langchain_store”.
collection_name (Optional[str]) – Which collection to use. Defaults to “langchain_collection”. If provided, default collection name will be set as well.
drop_old (Optional[bool]) – Whether to drop the previous collection and create a new one. Defaults to False.
embedding (Embeddings) –
kwargs (Any) –
- Returns
Epsilla vector store.
- Return type
- get(collection_name: str = '', response_fields: Optional[List[str]] = None) List[dict] [source]¶
Get the collection.
- Parameters
collection_name (Optional[str]) – The name of the collection to retrieve data from. If not provided, the default collection will be used.
response_fields (Optional[List[str]]) – List of field names in the result. If not specified, all available fields will be responded.
- Returns
A list of the retrieved data.
- Return type
List[dict]
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- Parameters
query (str) –
search_type (str) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, collection_name: str = '', **kwargs: Any) List[Document] [source]¶
Return the documents that are semantically most relevant to the query.
- Parameters
query (str) – String to query the vectorstore with.
k (Optional[int]) – Number of documents to return. Defaults to 4.
collection_name (Optional[str]) – Collection to use. Defaults to “langchain_store” or the one provided before.
kwargs (Any) –
- Returns
List of documents that are semantically most relevant to the query
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – input text
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]