langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpointยถ

class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]ยถ

Bases: BaseModel, Embeddings

Baidu Qianfan Embeddings embedding models.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param chunk_size: int = 16ยถ

Chunk size when multiple texts are input

param client: Any = Noneยถ

Qianfan client

param endpoint: str = ''ยถ

Endpoint of the Qianfan Embedding, required if custom model used.

param init_kwargs: Dict[str, Any] [Optional]ยถ

init kwargs for qianfan client init, such as query_per_second which is associated with qianfan resource object to limit QPS

param model: str = 'Embedding-V1'ยถ

Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu

for now, we support Embedding-V1 and - Embedding-V1 ๏ผˆ้ป˜่ฎคๆจกๅž‹๏ผ‰ - bge-large-en - bge-large-zh

preset models are mapping to an endpoint. model will be ignored if endpoint is set

param model_kwargs: Dict[str, Any] [Optional]ยถ

extra params for model invoke using with do.

param qianfan_ak: Optional[str] = Noneยถ

Qianfan application apikey

param qianfan_sk: Optional[str] = Noneยถ

Qianfan application secretkey

async aembed_documents(texts: List[str]) โ†’ List[List[float]][source]ยถ

Asynchronous Embed search docs.

Parameters

texts (List[str]) โ€“

Return type

List[List[float]]

async aembed_query(text: str) โ†’ List[float][source]ยถ

Asynchronous Embed query text.

Parameters

text (str) โ€“

Return type

List[float]

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) โ†’ Modelยถ

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = โ€˜allowโ€™ was set since it adds all passed values

Parameters
  • _fields_set (Optional[SetStr]) โ€“

  • values (Any) โ€“

Return type

Model

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) โ†’ Modelยถ

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“ fields to include in new model

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“ fields to exclude from new model, as with values this takes precedence over include

  • update (Optional[DictStrAny]) โ€“ values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep (bool) โ€“ set to True to make a deep copy of the model

  • self (Model) โ€“

Returns

new model instance

Return type

Model

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) โ†’ DictStrAnyยถ

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“

  • by_alias (bool) โ€“

  • skip_defaults (Optional[bool]) โ€“

  • exclude_unset (bool) โ€“

  • exclude_defaults (bool) โ€“

  • exclude_none (bool) โ€“

Return type

DictStrAny

embed_documents(texts: List[str]) โ†’ List[List[float]][source]ยถ

Embeds a list of text documents using the AutoVOT algorithm.

Parameters

texts (List[str]) โ€“ A list of text documents to embed.

Returns

A list of embeddings for each document in the input list.

Each embedding is represented as a list of float values.

Return type

List[List[float]]

embed_query(text: str) โ†’ List[float][source]ยถ

Embed query text.

Parameters

text (str) โ€“

Return type

List[float]

classmethod from_orm(obj: Any) โ†’ Modelยถ
Parameters

obj (Any) โ€“

Return type

Model

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) โ†’ unicodeยถ

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) โ€“

  • by_alias (bool) โ€“

  • skip_defaults (Optional[bool]) โ€“

  • exclude_unset (bool) โ€“

  • exclude_defaults (bool) โ€“

  • exclude_none (bool) โ€“

  • encoder (Optional[Callable[[Any], Any]]) โ€“

  • models_as_dict (bool) โ€“

  • dumps_kwargs (Any) โ€“

Return type

unicode

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) โ†’ Modelยถ
Parameters
  • path (Union[str, Path]) โ€“

  • content_type (unicode) โ€“

  • encoding (unicode) โ€“

  • proto (Protocol) โ€“

  • allow_pickle (bool) โ€“

Return type

Model

classmethod parse_obj(obj: Any) โ†’ Modelยถ
Parameters

obj (Any) โ€“

Return type

Model

classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) โ†’ Modelยถ
Parameters
  • b (Union[str, bytes]) โ€“

  • content_type (unicode) โ€“

  • encoding (unicode) โ€“

  • proto (Protocol) โ€“

  • allow_pickle (bool) โ€“

Return type

Model

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') โ†’ DictStrAnyยถ
Parameters
  • by_alias (bool) โ€“

  • ref_template (unicode) โ€“

Return type

DictStrAny

classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) โ†’ unicodeยถ
Parameters
  • by_alias (bool) โ€“

  • ref_template (unicode) โ€“

  • dumps_kwargs (Any) โ€“

Return type

unicode

classmethod update_forward_refs(**localns: Any) โ†’ Noneยถ

Try to update ForwardRefs on fields based on this Model, globalns and localns.

Parameters

localns (Any) โ€“

Return type

None

classmethod validate(value: Any) โ†’ Modelยถ
Parameters

value (Any) โ€“

Return type

Model

Examples using QianfanEmbeddingsEndpointยถ