langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint¶
- class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]¶
- Bases: - BaseModel,- Embeddings- Baidu Qianfan Embeddings embedding models. - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param chunk_size: int = 16¶
- Chunk size when multiple texts are input 
 - param client: Any = None¶
- Qianfan client 
 - param endpoint: str = ''¶
- Endpoint of the Qianfan Embedding, required if custom model used. 
 - param init_kwargs: Dict[str, Any] [Optional]¶
- init kwargs for qianfan client init, such as query_per_second which is associated with qianfan resource object to limit QPS 
 - param model: str = 'Embedding-V1'¶
- Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu - for now, we support Embedding-V1 and - Embedding-V1 (默认模型) - bge-large-en - bge-large-zh - preset models are mapping to an endpoint. model will be ignored if endpoint is set 
 - param model_kwargs: Dict[str, Any] [Optional]¶
- extra params for model invoke using with do. 
 - param qianfan_ak: Optional[str] = None¶
- Qianfan application apikey 
 - param qianfan_sk: Optional[str] = None¶
- Qianfan application secretkey 
 - async aembed_documents(texts: List[str]) List[List[float]][source]¶
- Asynchronous Embed search docs. - Parameters
- texts (List[str]) – 
- Return type
- List[List[float]] 
 
 - async aembed_query(text: str) List[float][source]¶
- Asynchronous Embed query text. - Parameters
- text (str) – 
- Return type
- List[float] 
 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model¶
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values - Parameters
- _fields_set (Optional[SetStr]) – 
- values (Any) – 
 
- Return type
- Model 
 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model¶
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include 
- update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep (bool) – set to True to make a deep copy of the model 
- self (Model) – 
 
- Returns
- new model instance 
- Return type
- Model 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny¶
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – 
- by_alias (bool) – 
- skip_defaults (Optional[bool]) – 
- exclude_unset (bool) – 
- exclude_defaults (bool) – 
- exclude_none (bool) – 
 
- Return type
- DictStrAny 
 
 - embed_documents(texts: List[str]) List[List[float]][source]¶
- Embeds a list of text documents using the AutoVOT algorithm. - Parameters
- texts (List[str]) – A list of text documents to embed. 
- Returns
- A list of embeddings for each document in the input list.
- Each embedding is represented as a list of float values. 
 
- Return type
- List[List[float]] 
 
 - embed_query(text: str) List[float][source]¶
- Embed query text. - Parameters
- text (str) – 
- Return type
- List[float] 
 
 - classmethod from_orm(obj: Any) Model¶
- Parameters
- obj (Any) – 
- Return type
- Model 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode¶
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). - Parameters
- include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – 
- exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – 
- by_alias (bool) – 
- skip_defaults (Optional[bool]) – 
- exclude_unset (bool) – 
- exclude_defaults (bool) – 
- exclude_none (bool) – 
- encoder (Optional[Callable[[Any], Any]]) – 
- models_as_dict (bool) – 
- dumps_kwargs (Any) – 
 
- Return type
- unicode 
 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
- Parameters
- path (Union[str, Path]) – 
- content_type (unicode) – 
- encoding (unicode) – 
- proto (Protocol) – 
- allow_pickle (bool) – 
 
- Return type
- Model 
 
 - classmethod parse_obj(obj: Any) Model¶
- Parameters
- obj (Any) – 
- Return type
- Model 
 
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
- Parameters
- b (Union[str, bytes]) – 
- content_type (unicode) – 
- encoding (unicode) – 
- proto (Protocol) – 
- allow_pickle (bool) – 
 
- Return type
- Model 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny¶
- Parameters
- by_alias (bool) – 
- ref_template (unicode) – 
 
- Return type
- DictStrAny 
 
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode¶
- Parameters
- by_alias (bool) – 
- ref_template (unicode) – 
- dumps_kwargs (Any) – 
 
- Return type
- unicode 
 
 - classmethod update_forward_refs(**localns: Any) None¶
- Try to update ForwardRefs on fields based on this Model, globalns and localns. - Parameters
- localns (Any) – 
- Return type
- None 
 
 - classmethod validate(value: Any) Model¶
- Parameters
- value (Any) – 
- Return type
- Model