langchain.agents.structured_chat.base.StructuredChatAgentΒΆ

class langchain.agents.structured_chat.base.StructuredChatAgent[source]ΒΆ

Bases: Agent

[Deprecated] Structured Chat Agent.

Notes

Deprecated since version langchain==0.1.0: Use create_structured_chat_agent instead.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param allowed_tools: Optional[List[str]] = NoneΒΆ
param llm_chain: LLMChain [Required]ΒΆ
param output_parser: AgentOutputParser [Optional]ΒΆ

Output parser for the agent.

async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish]ΒΆ

Given input, decided what to do.

Parameters
  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to run.

  • **kwargs (Any) – User inputs.

Returns

Action specifying what tool to use.

Return type

Union[AgentAction, AgentFinish]

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = β€˜allow’ was set since it adds all passed values

Parameters
  • _fields_set (Optional[SetStr]) –

  • values (Any) –

Return type

Model

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include

  • update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep (bool) – set to True to make a deep copy of the model

  • self (Model) –

Returns

new model instance

Return type

Model

classmethod create_prompt(tools: Sequence[BaseTool], prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n  "action": $TOOL_NAME,\n  "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n  "action": "Final Answer",\n  "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None) BasePromptTemplate[source]ΒΆ

Create a prompt for this class.

Parameters
  • tools (Sequence[BaseTool]) –

  • prefix (str) –

  • suffix (str) –

  • human_message_template (str) –

  • format_instructions (str) –

  • input_variables (Optional[List[str]]) –

  • memory_prompts (Optional[List[BasePromptTemplate]]) –

Return type

BasePromptTemplate

dict(**kwargs: Any) DictΒΆ

Return dictionary representation of agent.

Parameters

kwargs (Any) –

Return type

Dict

classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n  "action": $TOOL_NAME,\n  "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n  "action": "Final Answer",\n  "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any) Agent[source]ΒΆ

Construct an agent from an LLM and tools.

Parameters
  • llm (BaseLanguageModel) –

  • tools (Sequence[BaseTool]) –

  • callback_manager (Optional[BaseCallbackManager]) –

  • output_parser (Optional[AgentOutputParser]) –

  • prefix (str) –

  • suffix (str) –

  • human_message_template (str) –

  • format_instructions (str) –

  • input_variables (Optional[List[str]]) –

  • memory_prompts (Optional[List[BasePromptTemplate]]) –

  • kwargs (Any) –

Return type

Agent

classmethod from_orm(obj: Any) ModelΒΆ
Parameters

obj (Any) –

Return type

Model

get_allowed_tools() Optional[List[str]]ΒΆ
Return type

Optional[List[str]]

get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) Dict[str, Any]ΒΆ

Create the full inputs for the LLMChain from intermediate steps.

Parameters
  • intermediate_steps (List[Tuple[AgentAction, str]]) –

  • kwargs (Any) –

Return type

Dict[str, Any]

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

  • encoder (Optional[Callable[[Any], Any]]) –

  • models_as_dict (bool) –

  • dumps_kwargs (Any) –

Return type

unicode

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
Parameters
  • path (Union[str, Path]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

classmethod parse_obj(obj: Any) ModelΒΆ
Parameters

obj (Any) –

Return type

Model

classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
Parameters
  • b (Union[str, bytes]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish]ΒΆ

Given input, decided what to do.

Parameters
  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to run.

  • **kwargs (Any) – User inputs.

Returns

Action specifying what tool to use.

Return type

Union[AgentAction, AgentFinish]

return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinishΒΆ

Return response when agent has been stopped due to max iterations.

Parameters
  • early_stopping_method (str) –

  • intermediate_steps (List[Tuple[AgentAction, str]]) –

  • kwargs (Any) –

Return type

AgentFinish

save(file_path: Union[Path, str]) NoneΒΆ

Save the agent.

Parameters

file_path (Union[Path, str]) – Path to file to save the agent to.

Return type

None

Example: .. code-block:: python

# If working with agent executor agent.agent.save(file_path=”path/agent.yaml”)

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

Return type

DictStrAny

classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

  • dumps_kwargs (Any) –

Return type

unicode

tool_run_logging_kwargs() DictΒΆ
Return type

Dict

classmethod update_forward_refs(**localns: Any) NoneΒΆ

Try to update ForwardRefs on fields based on this Model, globalns and localns.

Parameters

localns (Any) –

Return type

None

classmethod validate(value: Any) ModelΒΆ
Parameters

value (Any) –

Return type

Model

property llm_prefix: strΒΆ

Prefix to append the llm call with.

property observation_prefix: strΒΆ

Prefix to append the observation with.

property return_values: List[str]ΒΆ

Return values of the agent.