Source code for langchain_core.prompt_values

"""**Prompt values** for language model prompts.

Prompt values are used to represent different pieces of prompts.
They can be used to represent text, images, or chat message pieces.
"""
from __future__ import annotations

from abc import ABC, abstractmethod
from typing import List, Literal, Sequence, cast

from typing_extensions import TypedDict

from langchain_core.load.serializable import Serializable
from langchain_core.messages import (
    AnyMessage,
    BaseMessage,
    HumanMessage,
    get_buffer_string,
)


[docs]class PromptValue(Serializable, ABC): """Base abstract class for inputs to any language model. PromptValues can be converted to both LLM (pure text-generation) inputs and ChatModel inputs. """
[docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "prompt"]
[docs] @abstractmethod def to_string(self) -> str: """Return prompt value as string."""
[docs] @abstractmethod def to_messages(self) -> List[BaseMessage]: """Return prompt as a list of Messages."""
[docs]class StringPromptValue(PromptValue): """String prompt value.""" text: str """Prompt text.""" type: Literal["StringPromptValue"] = "StringPromptValue"
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "base"]
[docs] def to_string(self) -> str: """Return prompt as string.""" return self.text
[docs] def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=self.text)]
[docs]class ChatPromptValue(PromptValue): """Chat prompt value. A type of a prompt value that is built from messages. """ messages: Sequence[BaseMessage] """List of messages."""
[docs] def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages)
[docs] def to_messages(self) -> List[BaseMessage]: """Return prompt as a list of messages.""" return list(self.messages)
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs]class ImageURL(TypedDict, total=False): detail: Literal["auto", "low", "high"] """Specifies the detail level of the image.""" url: str """Either a URL of the image or the base64 encoded image data."""
[docs]class ImagePromptValue(PromptValue): """Image prompt value.""" image_url: ImageURL """Prompt image.""" type: Literal["ImagePromptValue"] = "ImagePromptValue"
[docs] def to_string(self) -> str: """Return prompt as string.""" return self.image_url["url"]
[docs] def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=[cast(dict, self.image_url)])]
[docs]class ChatPromptValueConcrete(ChatPromptValue): """Chat prompt value which explicitly lists out the message types it accepts. For use in external schemas.""" messages: Sequence[AnyMessage] type: Literal["ChatPromptValueConcrete"] = "ChatPromptValueConcrete"
[docs] @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]