Source code for langchain_core.caches
"""
.. warning::
Beta Feature!
**Cache** provides an optional caching layer for LLMs.
Cache is useful for two reasons:
- It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
to the LLM provider.
Cache directly competes with Memory. See documentation for Pros and Cons.
**Class hierarchy:**
.. code-block::
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, Optional, Sequence
from langchain_core.outputs import Generation
from langchain_core.runnables import run_in_executor
RETURN_VAL_TYPE = Sequence[Generation]
[docs]class BaseCache(ABC):
"""Base interface for cache."""
[docs] @abstractmethod
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
[docs] @abstractmethod
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
[docs] @abstractmethod
def clear(self, **kwargs: Any) -> None:
"""Clear cache that can take additional keyword arguments."""
[docs] async def alookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return await run_in_executor(None, self.lookup, prompt, llm_string)
[docs] async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
"""Update cache based on prompt and llm_string."""
return await run_in_executor(None, self.update, prompt, llm_string, return_val)
[docs] async def aclear(self, **kwargs: Any) -> None:
"""Clear cache that can take additional keyword arguments."""
return await run_in_executor(None, self.clear, **kwargs)