langchain.memory.summary_buffer.ConversationSummaryBufferMemory

class langchain.memory.summary_buffer.ConversationSummaryBufferMemory[source]

Bases: BaseChatMemory, SummarizerMixin

Buffer with summarizer for storing conversation memory.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param ai_prefix: str = 'AI'
param chat_memory: BaseChatMessageHistory [Optional]
param human_prefix: str = 'Human'
param input_key: Optional[str] = None
param llm: BaseLanguageModel [Required]
param max_token_limit: int = 2000
param memory_key: str = 'history'
param moving_summary_buffer: str = ''
param output_key: Optional[str] = None
param prompt: BasePromptTemplate = PromptTemplate(input_variables=['new_lines', 'summary'], template='Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial intelligence is a force for good?\nAI: Because artificial intelligence will help humans reach their full potential.\n\nNew summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential.\nEND OF EXAMPLE\n\nCurrent summary:\n{summary}\n\nNew lines of conversation:\n{new_lines}\n\nNew summary:')
param return_messages: bool = False
param summary_message_cls: Type[BaseMessage] = <class 'langchain_core.messages.system.SystemMessage'>
clear() None[source]

Clear memory contents.

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) Model
classmethod get_lc_namespace() List[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]

classmethod is_lc_serializable() bool

Is this class serializable?

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod lc_id() List[str]

A unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any][source]

Return history buffer.

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod parse_obj(obj: Any) Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
predict_new_summary(messages: List[BaseMessage], existing_summary: str) str
prune() None[source]

Prune buffer if it exceeds max token limit

save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None[source]

Save context from this conversation to buffer.

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
to_json() Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() SerializedNotImplemented
classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) Model
property buffer: List[BaseMessage]
property lc_attributes: Dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

property lc_secrets: Dict[str, str]

A map of constructor argument names to secret ids.

For example,

{“openai_api_key”: “OPENAI_API_KEY”}

Examples using ConversationSummaryBufferMemory