langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentVLLMΒΆ
- class langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentVLLM[source]ΒΆ
 Bases:
OCIModelDeploymentLLMVLLM deployed on OCI Data Science Model Deployment
To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://<MD_OCID>/predict.
To authenticate, oracle-ads has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint
Example
from langchain_community.llms import OCIModelDeploymentVLLM oci_md = OCIModelDeploymentVLLM( endpoint="https://<MD_OCID>/predict", model="mymodel" )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param auth: dict [Optional]ΒΆ
 ADS auth dictionary for OCI authentication: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html. This can be generated by calling ads.common.auth.api_keys() or ads.common.auth.resource_principal(). If this is not provided then the ads.common.default_signer() will be used.
- param best_of: int = 1ΒΆ
 Generates best_of completions server-side and returns the βbestβ (the one with the highest log probability per token).
- param cache: Optional[bool] = NoneΒΆ
 Whether to cache the response.
- param callback_manager: Optional[BaseCallbackManager] = NoneΒΆ
 [DEPRECATED]
- param callbacks: Callbacks = NoneΒΆ
 Callbacks to add to the run trace.
- param endpoint: str = ''ΒΆ
 The uri of the endpoint from the deployed Model Deployment model.
- param frequency_penalty: float = 0.0ΒΆ
 Penalizes repeated tokens according to frequency. Between 0 and 1.
- param ignore_eos: bool = FalseΒΆ
 Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.
- param k: int = -1ΒΆ
 Number of most likely tokens to consider at each step.
- param logprobs: Optional[int] = NoneΒΆ
 Number of log probabilities to return per output token.
- param max_tokens: int = 256ΒΆ
 Denotes the number of tokens to predict per generation.
- param metadata: Optional[Dict[str, Any]] = NoneΒΆ
 Metadata to add to the run trace.
- param model: str [Required]ΒΆ
 The name of the model.
- param n: int = 1ΒΆ
 Number of output sequences to return for the given prompt.
- param p: float = 0.75ΒΆ
 Total probability mass of tokens to consider at each step.
- param presence_penalty: float = 0.0ΒΆ
 Penalizes repeated tokens. Between 0 and 1.
- param stop: Optional[List[str]] = NoneΒΆ
 Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
- param tags: Optional[List[str]] = NoneΒΆ
 Tags to add to the run trace.
- param temperature: float = 0.2ΒΆ
 A non-negative float that tunes the degree of randomness in generation.
- param use_beam_search: bool = FalseΒΆ
 Whether to use beam search instead of sampling.
- param verbose: bool [Optional]ΒΆ
 Whether to print out response text.
- __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) strΒΆ
 [Deprecated] Check Cache and run the LLM on the given prompt and input.[Deprecated] Check Cache and run the LLM on the given prompt and input.
Notes
Deprecated since version 0.1.7: Use invoke instead.
- async abatch(inputs: List[Union[PromptValue, str, Sequence[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]ΒΆ
 Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResultΒΆ
 Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
 take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
 type (e.g., pure text completion models vs chat models).
- Parameters
 prompts β List of string prompts.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
 - An LLMResult, which contains a list of candidate Generations for each input
 prompt and additional model provider-specific output.
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResultΒΆ
 Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
 take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
 type (e.g., pure text completion models vs chat models).
- Parameters
 prompts β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
 - An LLMResult, which contains a list of candidate Generations for each input
 prompt and additional model provider-specific output.
- async ainvoke(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) strΒΆ
 Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) strΒΆ
 [Deprecated][Deprecated]
Notes
Deprecated since version 0.1.7: Use ainvoke instead.
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessageΒΆ
 [Deprecated][Deprecated]
Notes
Deprecated since version 0.1.7: Use ainvoke instead.
- assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) RunnableSerializable[Any, Any]ΒΆ
 Assigns new fields to the dict output of this runnable. Returns a new runnable.
- async astream(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str]ΒΆ
 Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[StreamEvent]ΒΆ
 [Beta] Generate a stream of events.
Use to create an iterator ove StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
event | name | chunk | input | output ||----------------------|ββββββ|---------------------------------|ββββββββββββββββ|-------------------------------------------------| | on_chat_model_start | [model name] | | {βmessagesβ: [[SystemMessage, HumanMessage]]} | | | on_chat_model_stream | [model name] | AIMessageChunk(content=βhelloβ) | | | | on_chat_model_end | [model name] | | {βmessagesβ: [[SystemMessage, HumanMessage]]} | {βgenerationsβ: [β¦], βllm_outputβ: None, β¦} | | on_llm_start | [model name] | | {βinputβ: βhelloβ} | | | on_llm_stream | [model name] | βHelloβ | | | | on_llm_end | [model name] | | βHello human!β | | on_chain_start | format_docs | | | | | on_chain_stream | format_docs | βhello world!, goodbye world!β | | | | on_chain_end | format_docs | | [Document(β¦)] | βhello world!, goodbye world!β | | on_tool_start | some_tool | | {βxβ: 1, βyβ: β2β} | | | on_tool_stream | some_tool | {βxβ: 1, βyβ: β2β} | | | | on_tool_end | some_tool | | | {βxβ: 1, βyβ: β2β} | | on_retriever_start | [retriever name] | | {βqueryβ: βhelloβ} | | | on_retriever_chunk | [retriever name] | {documents: [β¦]} | | | | on_retriever_end | [retriever name] | | {βqueryβ: βhelloβ} | {documents: [β¦]} | | on_prompt_start | [template_name] | | {βquestionβ: βhelloβ} | | | on_prompt_end | [template_name] | | {βquestionβ: βhelloβ} | ChatPromptValue(messages: [SystemMessage, β¦]) |
Here are declarations associated with the events shown above:
format_docs:
```python def format_docs(docs: List[Document]) -> str:
βββFormat the docs.βββ return β, β.join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs) ```
some_tool:
```python @tool def some_tool(x: int, y: str) -> dict:
βββSome_tool.βββ return {βxβ: x, βyβ: y}
prompt:
```python template = ChatPromptTemplate.from_messages(
[(βsystemβ, βYou are Cat Agent 007β), (βhumanβ, β{question}β)]
).with_config({βrun_nameβ: βmy_templateβ, βtagsβ: [βmy_templateβ]}) ```
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
- Parameters
 input β The input to the runnable.
config β The config to use for the runnable.
version β The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized.
include_names β Only include events from runnables with matching names.
include_types β Only include events from runnables with matching types.
include_tags β Only include events from runnables with matching tags.
exclude_names β Exclude events from runnables with matching names.
exclude_types β Exclude events from runnables with matching types.
exclude_tags β Exclude events from runnables with matching tags.
kwargs β Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Returns
 An async stream of StreamEvents.[Beta] Generate a stream of events.
Use to create an iterator ove StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
event | name | chunk | input | output ||----------------------|ββββββ|---------------------------------|ββββββββββββββββ|-------------------------------------------------| | on_chat_model_start | [model name] | | {βmessagesβ: [[SystemMessage, HumanMessage]]} | | | on_chat_model_stream | [model name] | AIMessageChunk(content=βhelloβ) | | | | on_chat_model_end | [model name] | | {βmessagesβ: [[SystemMessage, HumanMessage]]} | {βgenerationsβ: [β¦], βllm_outputβ: None, β¦} | | on_llm_start | [model name] | | {βinputβ: βhelloβ} | | | on_llm_stream | [model name] | βHelloβ | | | | on_llm_end | [model name] | | βHello human!β | | on_chain_start | format_docs | | | | | on_chain_stream | format_docs | βhello world!, goodbye world!β | | | | on_chain_end | format_docs | | [Document(β¦)] | βhello world!, goodbye world!β | | on_tool_start | some_tool | | {βxβ: 1, βyβ: β2β} | | | on_tool_stream | some_tool | {βxβ: 1, βyβ: β2β} | | | | on_tool_end | some_tool | | | {βxβ: 1, βyβ: β2β} | | on_retriever_start | [retriever name] | | {βqueryβ: βhelloβ} | | | on_retriever_chunk | [retriever name] | {documents: [β¦]} | | | | on_retriever_end | [retriever name] | | {βqueryβ: βhelloβ} | {documents: [β¦]} | | on_prompt_start | [template_name] | | {βquestionβ: βhelloβ} | | | on_prompt_end | [template_name] | | {βquestionβ: βhelloβ} | ChatPromptValue(messages: [SystemMessage, β¦]) |
Here are declarations associated with the events shown above:
format_docs:
```python def format_docs(docs: List[Document]) -> str:
βββFormat the docs.βββ return β, β.join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs) ```
some_tool:
```python @tool def some_tool(x: int, y: str) -> dict:
βββSome_tool.βββ return {βxβ: x, βyβ: y}
prompt:
```python template = ChatPromptTemplate.from_messages(
[(βsystemβ, βYou are Cat Agent 007β), (βhumanβ, β{question}β)]
).with_config({βrun_nameβ: βmy_templateβ, βtagsβ: [βmy_templateβ]}) ```
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
- Parameters
 input β The input to the runnable.
config β The config to use for the runnable.
version β The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized.
include_names β Only include events from runnables with matching names.
include_types β Only include events from runnables with matching types.
include_tags β Only include events from runnables with matching tags.
exclude_names β Exclude events from runnables with matching names.
exclude_types β Exclude events from runnables with matching types.
exclude_tags β Exclude events from runnables with matching tags.
kwargs β Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Returns
 An async stream of StreamEvents.
Notes
- async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]ΒΆ
 Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
- Parameters
 input β The input to the runnable.
config β The config to use for the runnable.
diff β Whether to yield diffs between each step, or the current state.
with_streamed_output_list β Whether to yield the streamed_output list.
include_names β Only include logs with these names.
include_types β Only include logs with these types.
include_tags β Only include logs with these tags.
exclude_names β Exclude logs with these names.
exclude_types β Exclude logs with these types.
exclude_tags β Exclude logs with these tags.
- async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]ΒΆ
 Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
- batch(inputs: List[Union[PromptValue, str, Sequence[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]ΒΆ
 Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- bind(**kwargs: Any) Runnable[Input, Output]ΒΆ
 Bind arguments to a Runnable, returning a new Runnable.
- config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel]ΒΆ
 The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
- Parameters
 include β A list of fields to include in the config schema.
- Returns
 A pydantic model that can be used to validate config.
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]ΒΆ
 
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]ΒΆ
 
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
 Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
 Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
 include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep β set to True to make a deep copy of the model
- Returns
 new model instance
- dict(**kwargs: Any) DictΒΆ
 Return a dictionary of the LLM.
- classmethod from_orm(obj: Any) ModelΒΆ
 
- generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResultΒΆ
 Pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
 take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
 type (e.g., pure text completion models vs chat models).
- Parameters
 prompts β List of string prompts.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
 - An LLMResult, which contains a list of candidate Generations for each input
 prompt and additional model provider-specific output.
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResultΒΆ
 Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
 take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
 type (e.g., pure text completion models vs chat models).
- Parameters
 prompts β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
 - An LLMResult, which contains a list of candidate Generations for each input
 prompt and additional model provider-specific output.
- get_graph(config: Optional[RunnableConfig] = None) GraphΒΆ
 Return a graph representation of this runnable.
- get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]ΒΆ
 Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
- Parameters
 config β A config to use when generating the schema.
- Returns
 A pydantic model that can be used to validate input.
- classmethod get_lc_namespace() List[str]ΒΆ
 Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [βlangchainβ, βllmsβ, βopenaiβ]
- get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) strΒΆ
 Get the name of the runnable.
- get_num_tokens(text: str) intΒΆ
 Get the number of tokens present in the text.
Useful for checking if an input will fit in a modelβs context window.
- Parameters
 text β The string input to tokenize.
- Returns
 The integer number of tokens in the text.
- get_num_tokens_from_messages(messages: List[BaseMessage]) intΒΆ
 Get the number of tokens in the messages.
Useful for checking if an input will fit in a modelβs context window.
- Parameters
 messages β The message inputs to tokenize.
- Returns
 The sum of the number of tokens across the messages.
- get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]ΒΆ
 Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
- Parameters
 config β A config to use when generating the schema.
- Returns
 A pydantic model that can be used to validate output.
- get_prompts(config: Optional[RunnableConfig] = None) List[BasePromptTemplate]ΒΆ
 
- get_token_ids(text: str) List[int]ΒΆ
 Return the ordered ids of the tokens in a text.
- Parameters
 text β The string input to tokenize.
- Returns
 - A list of ids corresponding to the tokens in the text, in order they occur
 in the text.
- invoke(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) strΒΆ
 Transform a single input into an output. Override to implement.
- Parameters
 input β The input to the runnable.
config β A config to use when invoking the runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
- Returns
 The output of the runnable.
- classmethod is_lc_serializable() boolΒΆ
 Is this class serializable?
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
 Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str]ΒΆ
 A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- map() Runnable[List[Input], List[Output]]ΒΆ
 Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
 
- classmethod parse_obj(obj: Any) ModelΒΆ
 
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
 
- pick(keys: Union[str, List[str]]) RunnableSerializable[Any, Any]ΒΆ
 Pick keys from the dict output of this runnable. Returns a new runnable.
- pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) RunnableSerializable[Input, Other]ΒΆ
 Compose this runnable with another object to create a RunnableSequence.
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) strΒΆ
 [Deprecated][Deprecated]
Notes
Deprecated since version 0.1.7: Use invoke instead.
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessageΒΆ
 [Deprecated][Deprecated]
Notes
Deprecated since version 0.1.7: Use invoke instead.
- save(file_path: Union[Path, str]) NoneΒΆ
 Save the LLM.
- Parameters
 file_path β Path to file to save the LLM to.
Example: .. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
 
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
 
- stream(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]ΒΆ
 Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- to_json() Union[SerializedConstructor, SerializedNotImplemented]ΒΆ
 
- to_json_not_implemented() SerializedNotImplementedΒΆ
 
- transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]ΒΆ
 Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
- classmethod update_forward_refs(**localns: Any) NoneΒΆ
 Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) ModelΒΆ
 
- with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output]ΒΆ
 Bind config to a Runnable, returning a new Runnable.
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]ΒΆ
 Add fallbacks to a runnable, returning a new Runnable.
- Parameters
 fallbacks β A sequence of runnables to try if the original runnable fails.
exceptions_to_handle β A tuple of exception types to handle.
exception_key β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input.
- Returns
 A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
- with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output]ΒΆ
 Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output]ΒΆ
 Create a new Runnable that retries the original runnable on exceptions.
- Parameters
 retry_if_exception_type β A tuple of exception types to retry on
wait_exponential_jitter β Whether to add jitter to the wait time between retries
stop_after_attempt β The maximum number of attempts to make before giving up
- Returns
 A new Runnable that retries the original runnable on exceptions.
- with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output]ΒΆ
 Bind input and output types to a Runnable, returning a new Runnable.
- property InputType: TypeAliasΒΆ
 Get the input type for this runnable.
- property OutputType: Type[str]ΒΆ
 Get the input type for this runnable.
- property config_specs: List[ConfigurableFieldSpec]ΒΆ
 List configurable fields for this runnable.
- property input_schema: Type[BaseModel]ΒΆ
 The type of input this runnable accepts specified as a pydantic model.
- property lc_attributes: DictΒΆ
 List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]ΒΆ
 A map of constructor argument names to secret ids.
- For example,
 {βopenai_api_keyβ: βOPENAI_API_KEYβ}
- name: Optional[str] = NoneΒΆ
 The name of the runnable. Used for debugging and tracing.
- property output_schema: Type[BaseModel]ΒΆ
 The type of output this runnable produces specified as a pydantic model.