langchain_community.vectorstores.awadb
.AwaDB¶
- class langchain_community.vectorstores.awadb.AwaDB(table_name: str = 'langchain_awadb', embedding: Optional[Embeddings] = None, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any)[source]¶
AwaDB vector store.
- Initialize with AwaDB client.
If table_name is not specified, a random table name of _DEFAULT_TABLE_NAME + last segment of uuid would be created automatically.
- Parameters
table_name – Name of the table created, default _DEFAULT_TABLE_NAME.
embedding – Optional Embeddings initially set.
log_and_data_dir – Optional the root directory of log and data.
client – Optional AwaDB client.
kwargs – Any possible extend parameters in the future.
- Returns
None.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
([table_name, embedding, ...])Initialize with AwaDB client.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, is_duplicate_texts])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
create_table
(table_name, **kwargs)Create a new table.
delete
([ids])Delete the documents which have the specified ids.
from_documents
(documents[, embedding, ...])Create an AwaDB vectorstore from a list of documents.
from_texts
(texts[, embedding, metadatas, ...])Create an AwaDB vectorstore from a raw documents.
get
([ids, text_in_page_content, ...])Return docs according ids.
get_current_table
(**kwargs)Get the current table.
list_tables
(**kwargs)List all the tables created by the client.
load_local
(table_name, **kwargs)Load the local specified table.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, ...])Return docs most similar to query.
similarity_search_by_vector
([embedding, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])The most k similar documents and scores of the specified query.
update
(ids, texts[, metadatas])Update the documents which have the specified ids.
use
(table_name, **kwargs)Use the specified table.
- __init__(table_name: str = 'langchain_awadb', embedding: Optional[Embeddings] = None, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) None [source]¶
- Initialize with AwaDB client.
If table_name is not specified, a random table name of _DEFAULT_TABLE_NAME + last segment of uuid would be created automatically.
- Parameters
table_name – Name of the table created, default _DEFAULT_TABLE_NAME.
embedding – Optional Embeddings initially set.
log_and_data_dir – Optional the root directory of log and data.
client – Optional AwaDB client.
kwargs – Any possible extend parameters in the future.
- Returns
None.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, is_duplicate_texts: Optional[bool] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore. :param texts: Iterable of strings to add to the vectorstore. :param metadatas: Optional list of metadatas associated with the texts. :param is_duplicate_texts: Optional whether to duplicate texts. Defaults to True. :param kwargs: any possible extend parameters in the future.
- Returns
List of ids from adding the texts into the vectorstore.
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete the documents which have the specified ids.
- Parameters
ids – The ids of the embedding vectors.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful. False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) AwaDB [source]¶
Create an AwaDB vectorstore from a list of documents.
If a log_and_data_dir specified, the table will be persisted there.
- Parameters
documents (List[Document]) – List of documents to add to the vectorstore.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
table_name (str) – Name of the table to create.
log_and_data_dir (Optional[str]) – Directory to persist the table.
client (Optional[awadb.Client]) – AwaDB client.
Any – Any possible parameters in the future
- Returns
AwaDB vectorstore.
- Return type
- classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) AwaDB [source]¶
Create an AwaDB vectorstore from a raw documents.
- Parameters
texts (List[str]) – List of texts to add to the table.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None.
table_name (str) – Name of the table to create.
log_and_data_dir (Optional[str]) – Directory of logging and persistence.
client (Optional[awadb.Client]) – AwaDB client
- Returns
AwaDB vectorstore.
- Return type
- get(ids: Optional[List[str]] = None, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields: Optional[Set[str]] = None, limit: Optional[int] = None, **kwargs: Any) Dict[str, Document] [source]¶
Return docs according ids.
- Parameters
ids – The ids of the embedding vectors.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter – Filter by any metadata of the document.
not_include_fields – Not pack the specified fields of each document.
limit – The number of documents to return. Defaults to 5. Optional.
- Returns
Documents which satisfy the input conditions.
- load_local(table_name: str, **kwargs: Any) bool [source]¶
Load the local specified table.
- Parameters
table_name – Table name
kwargs – Any possible extend parameters in the future.
- Returns
Success or failure of loading the local specified table
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter (Optional[dict]) – Filter by metadata. Defaults to None.
- Returns
List of Documents selected by maximal marginal relevance.
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter (Optional[dict]) – Filter by metadata. Defaults to None.
- Returns
List of Documents selected by maximal marginal relevance.
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- similarity_search(query: str, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- Parameters
query – Text query.
k – The maximum number of documents to return.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter (Optional[dict]) – Filter by metadata. Defaults to None.
`{"color" (E.g.) –
”red”, “price”: 4.20}`. Optional.
`{"max_price" (E.g.) –
15.66, “min_price”: 4.20}`
field (price is the metadata) –
filter (means range) –
`{"maxe_price" (E.g.) –
15.66, “mine_price”: 4.20}`
field –
filter –
kwargs – Any possible extend parameters in the future.
- Returns
Returns the k most similar documents to the specified text query.
- similarity_search_by_vector(embedding: Optional[List[float]] = None, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields_in_metadata: Optional[Set[str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter – Filter by metadata. Defaults to None.
not_incude_fields_in_metadata – Not include meta fields of each document.
- Returns
List of Documents which are the most similar to the query vector.
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- similarity_search_with_score(query: str, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
The most k similar documents and scores of the specified query.
- Parameters
query – Text query.
k – The k most similar documents to the text query.
text_in_page_content – Filter by the text in page_content of Document.
meta_filter – Filter by metadata. Defaults to None.
kwargs – Any possible extend parameters in the future.
- Returns
The k most similar documents to the specified text query. 0 is dissimilar, 1 is the most similar.
- update(ids: List[str], texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] [source]¶
Update the documents which have the specified ids.
- Parameters
ids – The id list of the updating embedding vector.
texts – The texts of the updating documents.
metadatas – The metadatas of the updating documents.
- Returns
the ids of the updated documents.