langchain_community.embeddings.yandex
.YandexGPTEmbeddings¶
- class langchain_community.embeddings.yandex.YandexGPTEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
YandexGPT Embeddings models.
To use, you should have the
yandexcloud
python package installed.There are two authentication options for the service account with the
ai.languageModels.user
role:You can specify the token in a constructor parameter iam_token
or in an environment variable YC_IAM_TOKEN. - You can specify the key in a constructor parameter api_key or in an environment variable YC_API_KEY.
To use the default model specify the folder ID in a parameter folder_id or in an environment variable YC_FOLDER_ID. Or specify the model URI in a constructor parameter model_uri
Example
from langchain_community.embeddings.yandex import YandexGPTEmbeddings embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", model_uri="emb://<folder-id>/text-search-query/latest")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param api_key: SecretStr = ''¶
Yandex Cloud Api Key for service account with the ai.languageModels.user role
- Constraints
type = string
writeOnly = True
format = password
- param folder_id: str = ''¶
Yandex Cloud folder ID
- param iam_token: SecretStr = ''¶
Yandex Cloud IAM token for service account with the ai.languageModels.user role
- Constraints
type = string
writeOnly = True
format = password
- param max_retries: int = 6¶
Maximum number of retries to make when generating.
- param model_name: str = 'text-search-query'¶
Model name to use.
- param model_uri: str = ''¶
Model uri to use.
- param model_version: str = 'latest'¶
Model version to use.
- param sleep_interval: float = 0.0¶
Delay between API requests
- param url: str = 'llm.api.cloud.yandex.net:443'¶
The url of the API.
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embed documents using a YandexGPT embeddings models.
- Parameters
texts – The list of texts to embed.
- Returns
List of embeddings, one for each text.
- embed_query(text: str) List[float] [source]¶
Embed a query using a YandexGPT embeddings models.
- Parameters
text – The text to embed.
- Returns
Embeddings for the text.
- classmethod from_orm(obj: Any) Model ¶
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶