langchain_community.embeddings.oci_generative_ai
.OCIGenAIEmbeddings¶
- class langchain_community.embeddings.oci_generative_ai.OCIGenAIEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
OCI embedding models.
To authenticate, the OCI client uses the methods described in https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm
The authentifcation method is passed through auth_type and should be one of: API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE
Make sure you have the required policies (profile/roles) to access the OCI Generative AI service. If a specific config profile is used, you must pass the name of the profile (~/.oci/config) through auth_profile.
To use, you must provide the compartment id along with the endpoint url, and model id as named parameters to the constructor.
Example
from langchain.embeddings import OCIGenAIEmbeddings embeddings = OCIGenAIEmbeddings( model_id="MY_EMBEDDING_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID" )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param auth_profile: Optional[str] = 'DEFAULT'¶
The name of the profile in ~/.oci/config If not specified , DEFAULT will be used
- param auth_type: Optional[str] = 'API_KEY'¶
Authentication type, could be
API_KEY, SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE
If not specified, API_KEY will be used
- param compartment_id: str = None¶
OCID of compartment
- param model_id: str = None¶
Id of the model to call, e.g., cohere.embed-english-light-v2.0
- param model_kwargs: Optional[Dict] = None¶
Keyword arguments to pass to the model
- param service_endpoint: str = None¶
service endpoint url
- param truncate: Optional[str] = 'END'¶
Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”)
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Call out to OCIGenAI’s embedding endpoint.
- Parameters
texts – The list of texts to embed.
- Returns
List of embeddings, one for each text.
- embed_query(text: str) List[float] [source]¶
Call out to OCIGenAI’s embedding endpoint.
- Parameters
text – The text to embed.
- Returns
Embeddings for the text.
- classmethod from_orm(obj: Any) Model ¶
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶