langchain_community.embeddings.localai
.LocalAIEmbeddings¶
- class langchain_community.embeddings.localai.LocalAIEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
LocalAI embedding models.
Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class uses the
openai
Python package’sopenai.Embedding
as its client. Thus, you should have theopenai
python package installed, and defeat the environment variableOPENAI_API_KEY
by setting to a random string. You also need to specifyOPENAI_API_BASE
to point to your LocalAI service endpoint.Example
from langchain_community.embeddings import LocalAIEmbeddings openai = LocalAIEmbeddings( openai_api_key="random-string", openai_api_base="http://localhost:8080" )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param allowed_special: Union[Literal['all'], Set[str]] = {}¶
- param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
- param deployment: str = 'text-embedding-ada-002'¶
- param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
- param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
- param headers: Any = None¶
- param max_retries: int = 6¶
Maximum number of retries to make when generating.
- param model: str = 'text-embedding-ada-002'¶
- param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
- param openai_api_base: Optional[str] = None¶
- param openai_api_key: Optional[str] = None¶
- param openai_api_version: Optional[str] = None¶
- param openai_organization: Optional[str] = None¶
- param openai_proxy: Optional[str] = None¶
- param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶
Timeout in seconds for the LocalAI request.
- param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
- async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]] [source]¶
Call out to LocalAI’s embedding endpoint async for embedding search docs.
- Parameters
texts – The list of texts to embed.
chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class.
- Returns
List of embeddings, one for each text.
- async aembed_query(text: str) List[float] [source]¶
Call out to LocalAI’s embedding endpoint async for embedding query text.
- Parameters
text – The text to embed.
- Returns
Embedding for the text.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- embed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]] [source]¶
Call out to LocalAI’s embedding endpoint for embedding search docs.
- Parameters
texts – The list of texts to embed.
chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class.
- Returns
List of embeddings, one for each text.
- embed_query(text: str) List[float] [source]¶
Call out to LocalAI’s embedding endpoint for embedding query text.
- Parameters
text – The text to embed.
- Returns
Embedding for the text.
- classmethod from_orm(obj: Any) Model ¶
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶