langchain_community.callbacks.confident_callback
.DeepEvalCallbackHandler¶
- class langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler(metrics: List[Any], implementation_name: Optional[str] = None)[source]¶
Callback Handler that logs into deepeval.
- Parameters
implementation_name – name of the implementation in deepeval
metrics – A list of metrics
- Raises
ImportError – if the deepeval package is not installed.
Examples
>>> from langchain_community.llms import OpenAI >>> from langchain_community.callbacks import DeepEvalCallbackHandler >>> from deepeval.metrics import AnswerRelevancy >>> metric = AnswerRelevancy(minimum_score=0.3) >>> deepeval_callback = DeepEvalCallbackHandler( ... implementation_name="exampleImplementation", ... metrics=[metric], ... ) >>> llm = OpenAI( ... temperature=0, ... callbacks=[deepeval_callback], ... verbose=True, ... openai_api_key="API_KEY_HERE", ... ) >>> llm.generate([ ... "What is the best evaluation tool out there? (no bias at all)", ... ]) "Deepeval, no doubt about it."
Initializes the deepevalCallbackHandler.
- Parameters
implementation_name – Name of the implementation you want.
metrics – What metrics do you want to track?
- Raises
ImportError – if the deepeval package is not installed.
ConnectionError – if the connection to deepeval fails.
Attributes
BLOG_URL
ISSUES_URL
REPO_URL
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__
(metrics[, implementation_name])Initializes the deepevalCallbackHandler.
on_agent_action
(action, **kwargs)Do nothing when agent takes a specific action.
on_agent_finish
(finish, **kwargs)Do nothing
on_chain_end
(outputs, **kwargs)Do nothing when chain ends.
on_chain_error
(error, **kwargs)Do nothing when LLM chain outputs an error.
on_chain_start
(serialized, inputs, **kwargs)Do nothing when chain starts
on_chat_model_start
(serialized, messages, *, ...)Run when a chat model starts running.
on_llm_end
(response, **kwargs)Log records to deepeval when an LLM ends.
on_llm_error
(error, **kwargs)Do nothing when LLM outputs an error.
on_llm_new_token
(token, **kwargs)Do nothing when a new token is generated.
on_llm_start
(serialized, prompts, **kwargs)Store the prompts
on_retriever_end
(documents, *, run_id[, ...])Run when Retriever ends running.
on_retriever_error
(error, *, run_id[, ...])Run when Retriever errors.
on_retriever_start
(serialized, query, *, run_id)Run when Retriever starts running.
on_retry
(retry_state, *, run_id[, parent_run_id])Run on a retry event.
on_text
(text, **kwargs)Do nothing
on_tool_end
(output[, observation_prefix, ...])Do nothing when tool ends.
on_tool_error
(error, **kwargs)Do nothing when tool outputs an error.
on_tool_start
(serialized, input_str, **kwargs)Do nothing when tool starts.
- __init__(metrics: List[Any], implementation_name: Optional[str] = None) None [source]¶
Initializes the deepevalCallbackHandler.
- Parameters
implementation_name – Name of the implementation you want.
metrics – What metrics do you want to track?
- Raises
ImportError – if the deepeval package is not installed.
ConnectionError – if the connection to deepeval fails.
- on_agent_action(action: AgentAction, **kwargs: Any) Any [source]¶
Do nothing when agent takes a specific action.
- on_agent_finish(finish: AgentFinish, **kwargs: Any) None [source]¶
Do nothing
- on_chain_error(error: BaseException, **kwargs: Any) None [source]¶
Do nothing when LLM chain outputs an error.
- on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) None [source]¶
Do nothing when chain starts
- on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Run when a chat model starts running.
- on_llm_end(response: LLMResult, **kwargs: Any) None [source]¶
Log records to deepeval when an LLM ends.
- on_llm_error(error: BaseException, **kwargs: Any) None [source]¶
Do nothing when LLM outputs an error.
- on_llm_new_token(token: str, **kwargs: Any) None [source]¶
Do nothing when a new token is generated.
- on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) None [source]¶
Store the prompts
- on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) Any ¶
Run when Retriever ends running.
- on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) Any ¶
Run when Retriever errors.
- on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Run when Retriever starts running.
- on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) Any ¶
Run on a retry event.
- on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) None [source]¶
Do nothing when tool ends.