Source code for langchain_community.llms.titan_takeoff
from typing import Any, Iterator, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from requests.exceptions import ConnectionError
from langchain_community.llms.utils import enforce_stop_tokens
[docs]class TitanTakeoff(LLM):
"""Wrapper around Titan Takeoff APIs."""
base_url: str = "http://localhost:8000"
"""Specifies the baseURL to use for the Titan Takeoff API.
Default = http://localhost:8000.
"""
generate_max_length: int = 128
"""Maximum generation length. Default = 128."""
sampling_topk: int = 1
"""Sample predictions from the top K most probable candidates. Default = 1."""
sampling_topp: float = 1.0
"""Sample from predictions whose cumulative probability exceeds this value.
Default = 1.0.
"""
sampling_temperature: float = 1.0
"""Sample with randomness. Bigger temperatures are associated with
more randomness and 'creativity'. Default = 1.0.
"""
repetition_penalty: float = 1.0
"""Penalise the generation of tokens that have been generated before.
Set to > 1 to penalize. Default = 1 (no penalty).
"""
no_repeat_ngram_size: int = 0
"""Prevent repetitions of ngrams of this size. Default = 0 (turned off)."""
streaming: bool = False
"""Whether to stream the output. Default = False."""
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Titan Takeoff Server."""
params = {
"generate_max_length": self.generate_max_length,
"sampling_topk": self.sampling_topk,
"sampling_topp": self.sampling_topp,
"sampling_temperature": self.sampling_temperature,
"repetition_penalty": self.repetition_penalty,
"no_repeat_ngram_size": self.no_repeat_ngram_size,
}
return params
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "titan_takeoff"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Titan Takeoff generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
try:
if self.streaming:
text_output = ""
for chunk in self._stream(
prompt=prompt,
stop=stop,
run_manager=run_manager,
):
text_output += chunk.text
return text_output
url = f"{self.base_url}/generate"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params)
response.raise_for_status()
response.encoding = "utf-8"
text = ""
if "message" in response.json():
text = response.json()["message"]
else:
raise ValueError("Something went wrong.")
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
except ConnectionError:
raise ConnectionError(
"Could not connect to Titan Takeoff server. \
Please make sure that the server is running."
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Call out to Titan Takeoff stream endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
url = f"{self.base_url}/generate_stream"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params, stream=True)
response.encoding = "utf-8"
for text in response.iter_content(chunk_size=1, decode_unicode=True):
if text:
chunk = GenerationChunk(text=text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"base_url": self.base_url, **{}, **self._default_params}