Source code for langchain_community.chat_models.minimax

"""Wrapper around Minimax chat models."""
import logging
from typing import Any, Dict, List, Optional, cast

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
)
from langchain_core.outputs import ChatResult

from langchain_community.llms.minimax import MinimaxCommon
from langchain_community.llms.utils import enforce_stop_tokens

logger = logging.getLogger(__name__)


def _parse_message(msg_type: str, text: str) -> Dict:
    return {"sender_type": msg_type, "text": text}


def _parse_chat_history(history: List[BaseMessage]) -> List:
    """Parse a sequence of messages into history."""
    chat_history = []
    for message in history:
        content = cast(str, message.content)
        if isinstance(message, HumanMessage):
            chat_history.append(_parse_message("USER", content))
        if isinstance(message, AIMessage):
            chat_history.append(_parse_message("BOT", content))
    return chat_history


[docs]class MiniMaxChat(MinimaxCommon, BaseChatModel): """Wrapper around Minimax large language models. To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and ``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.chat_models import MiniMaxChat llm = MiniMaxChat(model_name="abab5-chat") """ def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) history = _parse_chat_history(messages) payload = self._default_params payload["messages"] = history text = self._client.post(payload) # This is required since the stop are not enforced by the model parameters return text if stop is None else enforce_stop_tokens(text, stop) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """Minimax AI doesn't support async requests at the moment.""" )