Source code for langchain_community.chat_models.hunyuan

import base64
import hashlib
import hmac
import json
import logging
import time
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
from urllib.parse import urlparse

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
    get_pydantic_field_names,
)

logger = logging.getLogger(__name__)

DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com"
DEFAULT_PATH = "/hyllm/v1/chat/completions"


def _convert_message_to_dict(message: BaseMessage) -> dict:
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
    else:
        raise TypeError(f"Got unknown type {message}")

    return message_dict


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    role = _dict["role"]
    if role == "user":
        return HumanMessage(content=_dict["content"])
    elif role == "assistant":
        return AIMessage(content=_dict.get("content", "") or "")
    else:
        return ChatMessage(content=_dict["content"], role=role)


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = _dict.get("role")
    content = _dict.get("content") or ""

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content)
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)


# signature generation
# https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3
def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str:
    sorted_keys = sorted(payload.keys())

    url_info = urlparse(url)

    sign_str = url_info.netloc + url_info.path + "?"

    for key in sorted_keys:
        value = payload[key]

        if isinstance(value, list) or isinstance(value, dict):
            value = json.dumps(value, separators=(",", ":"))
        elif isinstance(value, float):
            value = "%g" % value

        sign_str = sign_str + key + "=" + str(value) + "&"

    sign_str = sign_str[:-1]

    hmacstr = hmac.new(
        key=secret_key.get_secret_value().encode("utf-8"),
        msg=sign_str.encode("utf-8"),
        digestmod=hashlib.sha1,
    ).digest()

    return base64.b64encode(hmacstr).decode("utf-8")


def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
    generations = []
    for choice in response["choices"]:
        message = _convert_dict_to_message(choice["messages"])
        generations.append(ChatGeneration(message=message))

    token_usage = response["usage"]
    llm_output = {"token_usage": token_usage}
    return ChatResult(generations=generations, llm_output=llm_output)


[docs]class ChatHunyuan(BaseChatModel): """Tencent Hunyuan chat models API by Tencent. For more information, see https://cloud.tencent.com/document/product/1729 """ @property def lc_secrets(self) -> Dict[str, str]: return { "hunyuan_app_id": "HUNYUAN_APP_ID", "hunyuan_secret_id": "HUNYUAN_SECRET_ID", "hunyuan_secret_key": "HUNYUAN_SECRET_KEY", } @property def lc_serializable(self) -> bool: return True hunyuan_api_base: str = Field(default=DEFAULT_API_BASE) """Hunyuan custom endpoints""" hunyuan_app_id: Optional[int] = None """Hunyuan App ID""" hunyuan_secret_id: Optional[str] = None """Hunyuan Secret ID""" hunyuan_secret_key: Optional[SecretStr] = None """Hunyuan Secret Key""" streaming: bool = False """Whether to stream the results or not.""" request_timeout: int = 60 """Timeout for requests to Hunyuan API. Default is 60 seconds.""" query_id: Optional[str] = None """Query id for troubleshooting""" temperature: float = 1.0 """What sampling temperature to use.""" top_p: float = 1.0 """What probability mass to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: values["hunyuan_api_base"] = get_from_dict_or_env( values, "hunyuan_api_base", "HUNYUAN_API_BASE", DEFAULT_API_BASE, ) values["hunyuan_app_id"] = get_from_dict_or_env( values, "hunyuan_app_id", "HUNYUAN_APP_ID", ) values["hunyuan_secret_id"] = get_from_dict_or_env( values, "hunyuan_secret_id", "HUNYUAN_SECRET_ID", ) values["hunyuan_secret_key"] = convert_to_secret_str( get_from_dict_or_env( values, "hunyuan_secret_key", "HUNYUAN_SECRET_KEY", ) ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Hunyuan API.""" normal_params = { "app_id": self.hunyuan_app_id, "secret_id": self.hunyuan_secret_id, "temperature": self.temperature, "top_p": self.top_p, } if self.query_id is not None: normal_params["query_id"] = self.query_id return {**normal_params, **self.model_kwargs} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages=messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) res = self._chat(messages, **kwargs) response = res.json() if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") return _create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: res = self._chat(messages, **kwargs) default_chunk_class = AIMessageChunk for chunk in res.iter_lines(): response = json.loads(chunk) if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") for choice in response["choices"]: chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(chunk.content) def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: if self.hunyuan_secret_key is None: raise ValueError("Hunyuan secret key is not set.") parameters = {**self._default_params, **kwargs} headers = parameters.pop("headers", {}) timestamp = parameters.pop("timestamp", int(time.time())) expired = parameters.pop("expired", timestamp + 24 * 60 * 60) payload = { "timestamp": timestamp, "expired": expired, "messages": [_convert_message_to_dict(m) for m in messages], **parameters, } if self.streaming: payload["stream"] = 1 url = self.hunyuan_api_base + DEFAULT_PATH res = requests.post( url=url, timeout=self.request_timeout, headers={ "Content-Type": "application/json", "Authorization": _signature( secret_key=self.hunyuan_secret_key, url=url, payload=payload ), **headers, }, json=payload, stream=self.streaming, ) return res @property def _llm_type(self) -> str: return "hunyuan-chat"