langchain_community.llms.aphrodite
.AphroditeΒΆ
- class langchain_community.llms.aphrodite.Aphrodite[source]ΒΆ
Bases:
BaseLLM
Aphrodite language model.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param aphrodite_kwargs: Dict[str, Any] [Optional]ΒΆ
Holds any model parameters valid for aphrodite.LLM call not explicitly specified.
- param best_of: Optional[int] = NoneΒΆ
Number of output sequences that are generated from the prompt. From these best_of sequences, the top n sequences are returned. best_of must be >= n. This is treated as the beam width when use_beam_search is True. By default, best_of is set to n.
- param cache: Optional[bool] = NoneΒΆ
- param callback_manager: Optional[BaseCallbackManager] = NoneΒΆ
- param callbacks: Callbacks = NoneΒΆ
- param custom_token_bans: Optional[List[int]] = NoneΒΆ
List of token IDs to ban from generating.
- param download_dir: Optional[str] = NoneΒΆ
Directory to download and load the weights. (Default to the default cache dir of huggingface)
- param dtype: str = 'auto'ΒΆ
The data type for the model weights and activations.
- param early_stopping: bool = FalseΒΆ
Controls the stopping condition for beam search. It accepts the following values: True, where the generation stops as soon as there are best_of complete candidates; False, where a heuristic is applied to the generation stops when it is very unlikely to find better candidates; never, where the beam search procedure only stops where there cannot be better candidates (canonical beam search algorithm).
- param epsilon_cutoff: float = 0.0ΒΆ
Float that controls the cutoff threshold for Epsilon sampling (simple probability threshold truncation). Specified in units of 1e-4. Set to 0 to disable.
- param eta_cutoff: float = 0.0ΒΆ
Float that controls the cutoff threshold for Eta sampling (a form of entropy adaptive truncation sampling). Threshold is calculated as `min(eta, sqrt(eta)*entropy(probs)). Specified in units of 1e-4. Set to 0 to disable.
- param frequency_penalty: float = 0.0ΒΆ
Float that penalizes new tokens based on their frequency in the generated text so far. Applied additively to the logits.
- param ignore_eos: bool = FalseΒΆ
Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.
- param length_penalty: float = 1.0ΒΆ
Float that penalizes sequences based on their length. Used only when use_beam_search is True.
- param logit_bias: Optional[Dict[str, float]] = NoneΒΆ
List of LogitsProcessors to change the probability of token prediction at runtime.
- param logprobs: Optional[int] = NoneΒΆ
Number of log probabilities to return per output token.
- param max_tokens: int = 512ΒΆ
Maximum number of tokens to generate per output sequence.
- param metadata: Optional[Dict[str, Any]] = NoneΒΆ
Metadata to add to the run trace.
- param min_p: float = 0.0ΒΆ
Float that controls the cutoff for min-p sampling. Exact cutoff is min_p*max_prob. Must be in [0,1], 0 to disable.
- param mirostat_mode: int = 0ΒΆ
The mirostat mode to use. 0 for no mirostat, 2 for mirostat v2. Mode 1 is not supported.
- param mirostat_tau: float = 0.0ΒΆ
The target βsurprisalβ that mirostat works towards. Range [0, inf).
- param model: str = ''ΒΆ
The name or path of a HuggingFace Transformers model.
- param n: int = 1ΒΆ
Number of output sequences to return for the given prompt.
- param presence_penalty: float = 0.0ΒΆ
Float that penalizes new tokens based on whether they appear in the generated text so far. Values > 0 encourage the model to generate new tokens, while values < 0 encourage the model to repeat tokens.
- param prompt_logprobs: Optional[int] = NoneΒΆ
Number of log probabilities to return per prompt token.
- param quantization: Optional[str] = NoneΒΆ
Quantization mode to use. Can be one of awq or gptq.
- param repetition_penalty: float = 1.0ΒΆ
Float that penalizes new tokens based on their frequency in the generated text so far. Applied multiplicatively to the logits.
- param skip_special_tokens: bool = TrueΒΆ
Whether to skip special tokens in the output. Defaults to True.
- param spaces_between_special_tokens: bool = TrueΒΆ
Whether to add spaces between special tokens in the output. Defaults to True.
- param stop: Optional[List[str]] = NoneΒΆ
List of strings that stop the generation when they are generated. The returned output will not contain the stop tokens.
- param stop_token_ids: Optional[List[int]] = NoneΒΆ
List of tokens that stop the generation when they are generated. The returned output will contain the stop tokens unless the stop tokens are special tokens.
- param tags: Optional[List[str]] = NoneΒΆ
Tags to add to the run trace.
- param temperature: float = 1.0ΒΆ
Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random. Zero is equivalent to greedy sampling.
- param tensor_parallel_size: Optional[int] = 1ΒΆ
The number of GPUs to use for distributed execution with tensor parallelism.
- param tfs: float = 1.0ΒΆ
Float that controls the cumulative approximate curvature of the distribution to retain for Tail Free Sampling. Must be in (0, 1]. Set to 1.0 to disable.
- param top_a: float = 0.0ΒΆ
Float that controls the cutoff for Top-A sampling. Exact cutoff is top_a*max_prob**2. Must be in [0,inf], 0 to disable.
- param top_k: int = -1ΒΆ
Integer that controls the number of top tokens to consider. Set to -1 to consider all tokens (disabled).
- param top_p: float = 1.0ΒΆ
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to 1.0 to consider all tokens.
- param trust_remote_code: Optional[bool] = FalseΒΆ
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
- param typical_p: float = 1.0ΒΆ
Float that controls the cumulative probability of tokens closest in surprise to the expected surprise to consider. Must be in (0, 1]. Set to 1 to disable.
- param use_beam_search: bool = FalseΒΆ
Whether to use beam search instead of sampling.
- param verbose: bool [Optional]ΒΆ
Whether to print out response text.
- __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str ΒΆ
Check Cache and run the LLM on the given prompt and input.
- async abatch(inputs: List[Union[PromptValue, str, Sequence[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ΒΆ
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResult ΒΆ
Run the LLM on the given prompt and input.
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ΒΆ
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- async ainvoke(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str ΒΆ
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ΒΆ
Asynchronously pass a string to the model and return a string prediction.
- Use this method when calling pure text generation models and only the top
candidate generation is needed.
- Parameters
text β String input to pass to the model.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
Top model prediction as a string.
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ΒΆ
Asynchronously pass messages to the model and return a message prediction.
- Use this method when calling chat models and only the top
candidate generation is needed.
- Parameters
messages β A sequence of chat messages corresponding to a single model input.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
Top model prediction as a message.
- assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) RunnableSerializable[Any, Any] ΒΆ
Assigns new fields to the dict output of this runnable. Returns a new runnable.
- async astream(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str] ΒΆ
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] ΒΆ
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
- Parameters
input β The input to the runnable.
config β The config to use for the runnable.
diff β Whether to yield diffs between each step, or the current state.
with_streamed_output_list β Whether to yield the streamed_output list.
include_names β Only include logs with these names.
include_types β Only include logs with these types.
include_tags β Only include logs with these tags.
exclude_names β Exclude logs with these names.
exclude_types β Exclude logs with these types.
exclude_tags β Exclude logs with these tags.
- async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ΒΆ
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
- batch(inputs: List[Union[PromptValue, str, Sequence[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ΒΆ
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- bind(**kwargs: Any) Runnable[Input, Output] ΒΆ
Bind arguments to a Runnable, returning a new Runnable.
- config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel] ΒΆ
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
- Parameters
include β A list of fields to include in the config schema.
- Returns
A pydantic model that can be used to validate config.
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ΒΆ
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ΒΆ
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ΒΆ
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ΒΆ
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep β set to True to make a deep copy of the model
- Returns
new model instance
- dict(**kwargs: Any) Dict ΒΆ
Return a dictionary of the LLM.
- classmethod from_orm(obj: Any) Model ΒΆ
- generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) LLMResult ΒΆ
Run the LLM on the given prompt and input.
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ΒΆ
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- get_graph(config: Optional[RunnableConfig] = None) Graph ΒΆ
Return a graph representation of this runnable.
- get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ΒΆ
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
- Parameters
config β A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate input.
- classmethod get_lc_namespace() List[str] ΒΆ
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [βlangchainβ, βllmsβ, βopenaiβ]
- get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) str ΒΆ
Get the name of the runnable.
- get_num_tokens(text: str) int ΒΆ
Get the number of tokens present in the text.
Useful for checking if an input will fit in a modelβs context window.
- Parameters
text β The string input to tokenize.
- Returns
The integer number of tokens in the text.
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ΒΆ
Get the number of tokens in the messages.
Useful for checking if an input will fit in a modelβs context window.
- Parameters
messages β The message inputs to tokenize.
- Returns
The sum of the number of tokens across the messages.
- get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ΒΆ
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
- Parameters
config β A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate output.
- get_prompts(config: Optional[RunnableConfig] = None) List[BasePromptTemplate] ΒΆ
- get_token_ids(text: str) List[int] ΒΆ
Return the ordered ids of the tokens in a text.
- Parameters
text β The string input to tokenize.
- Returns
- A list of ids corresponding to the tokens in the text, in order they occur
in the text.
- invoke(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str ΒΆ
Transform a single input into an output. Override to implement.
- Parameters
input β The input to the runnable.
config β A config to use when invoking the runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
- Returns
The output of the runnable.
- classmethod is_lc_serializable() bool ΒΆ
Is this class serializable?
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ΒΆ
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str] ΒΆ
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- map() Runnable[List[Input], List[Output]] ΒΆ
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- classmethod parse_obj(obj: Any) Model ΒΆ
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- pick(keys: Union[str, List[str]]) RunnableSerializable[Any, Any] ΒΆ
Pick keys from the dict output of this runnable. Returns a new runnable.
- pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) RunnableSerializable[Input, Other] ΒΆ
Compose this runnable with another object to create a RunnableSequence.
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ΒΆ
Pass a single string input to the model and return a string prediction.
- Use this method when passing in raw text. If you want to pass in specific
types of chat messages, use predict_messages.
- Parameters
text β String input to pass to the model.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
Top model prediction as a string.
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ΒΆ
Pass a message sequence to the model and return a message prediction.
- Use this method when passing in chat messages. If you want to pass in raw text,
use predict.
- Parameters
messages β A sequence of chat messages corresponding to a single model input.
stop β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
**kwargs β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
Top model prediction as a message.
- save(file_path: Union[Path, str]) None ΒΆ
Save the LLM.
- Parameters
file_path β Path to file to save the LLM to.
Example: .. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ΒΆ
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ΒΆ
- stream(input: Union[PromptValue, str, Sequence[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str] ΒΆ
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ΒΆ
- to_json_not_implemented() SerializedNotImplemented ΒΆ
- transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ΒΆ
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
- classmethod update_forward_refs(**localns: Any) None ΒΆ
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ΒΆ
- with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output] ΒΆ
Bind config to a Runnable, returning a new Runnable.
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) RunnableWithFallbacksT[Input, Output] ΒΆ
Add fallbacks to a runnable, returning a new Runnable.
- Parameters
fallbacks β A sequence of runnables to try if the original runnable fails.
exceptions_to_handle β A tuple of exception types to handle.
- Returns
A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
- with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output] ΒΆ
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] ΒΆ
Create a new Runnable that retries the original runnable on exceptions.
- Parameters
retry_if_exception_type β A tuple of exception types to retry on
wait_exponential_jitter β Whether to add jitter to the wait time between retries
stop_after_attempt β The maximum number of attempts to make before giving up
- Returns
A new Runnable that retries the original runnable on exceptions.
- with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output] ΒΆ
Bind input and output types to a Runnable, returning a new Runnable.
- property InputType: TypeAliasΒΆ
Get the input type for this runnable.
- property OutputType: Type[str]ΒΆ
Get the input type for this runnable.
- property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]ΒΆ
List configurable fields for this runnable.
- property input_schema: Type[pydantic.main.BaseModel]ΒΆ
The type of input this runnable accepts specified as a pydantic model.
- property lc_attributes: DictΒΆ
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]ΒΆ
A map of constructor argument names to secret ids.
- For example,
{βopenai_api_keyβ: βOPENAI_API_KEYβ}
- name: Optional[str] = NoneΒΆ
The name of the runnable. Used for debugging and tracing.
- property output_schema: Type[pydantic.main.BaseModel]ΒΆ
The type of output this runnable produces specified as a pydantic model.