langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings¶

class langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings[source]¶

Bases: BaseModel, Embeddings

Embeddings by SpaCy models.

It only supports the ‘en_core_web_sm’ model.

nlp¶

The Spacy model loaded into memory.

Type

Any

embed_documents(texts

List[str]) -> List[List[float]]: Generates embeddings for a list of documents.

embed_query(text

str) -> List[float]: Generates an embedding for a single piece of text.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param nlp: Any = None¶
async aembed_documents(texts: List[str]) → List[List[float]][source]¶

Asynchronously generates embeddings for a list of documents. This method is not implemented and raises a NotImplementedError.

Parameters

texts (List[str]) – The documents to generate embeddings for.

Raises

NotImplementedError – This method is not implemented.

async aembed_query(text: str) → List[float][source]¶

Asynchronously generates an embedding for a single piece of text. This method is not implemented and raises a NotImplementedError.

Parameters

text (str) – The text to generate an embedding for.

Raises

NotImplementedError – This method is not implemented.

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

embed_documents(texts: List[str]) → List[List[float]][source]¶

Generates embeddings for a list of documents.

Parameters

texts (List[str]) – The documents to generate embeddings for.

Returns

A list of embeddings, one for each document.

embed_query(text: str) → List[float][source]¶

Generates an embedding for a single piece of text.

Parameters

text (str) – The text to generate an embedding for.

Returns

The embedding for the text.

classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model¶

Examples using SpacyEmbeddings¶