langchain.chains.combine_documents.stuff
.create_stuff_documents_chain¶
- langchain.chains.combine_documents.stuff.create_stuff_documents_chain(llm: Runnable[Union[PromptValue, str, Sequence[BaseMessage]], Union[BaseMessage, str]], prompt: BasePromptTemplate, *, output_parser: Optional[BaseOutputParser] = None, document_prompt: Optional[BasePromptTemplate] = None, document_separator: str = '\n\n') Runnable[Dict[str, Any], Any] [source]¶
Create a chain for passing a list of Documents to a model.
- Args:
llm: Language model. prompt: Prompt template. Must contain input variable “context”, which will be
used for passing in the formatted documents.
output_parser: Output parser. Defaults to StrOutputParser. document_prompt: Prompt used for formatting each document into a string. Input
variables can be “page_content” or any metadata keys that are in all documents. “page_content” will automatically retrieve the Document.page_content, and all other inputs variables will be automatically retrieved from the Document.metadata dictionary. Default to a prompt that only contains Document.page_content.
document_separator: String separator to use between formatted document strings.
- Returns:
An LCEL Runnable. The input is a dictionary that must have a “context” key that maps to a List[Document], and any other input variables expected in the prompt. The Runnable return type depends on output_parser used.
- Example:
# pip install -U langchain langchain-community from langchain_community.chat_models import ChatOpenAI from langchain_core.documents import Document from langchain_core.prompts import ChatPromptTemplate from langchain.chains.combine_documents import create_stuff_documents_chain prompt = ChatPromptTemplate.from_messages( [("system", "What are everyone's favorite colors:
- {context}”)]
) llm = ChatOpenAI(model_name=”gpt-3.5-turbo”) chain = create_stuff_documents_chain(llm, prompt)
- docs = [
Document(page_content=”Jesse loves red but not yellow”), Document(page_content = “Jamal loves green but not as much as he loves orange”)
]
chain.invoke({“context”: docs})