langchain.agents.openai_assistant.base
.OpenAIAssistantRunnable¶
- class langchain.agents.openai_assistant.base.OpenAIAssistantRunnable[source]¶
Bases:
RunnableSerializable
[Dict
,Union
[List
[OpenAIAssistantAction
],OpenAIAssistantFinish
,List
[ThreadMessage
],List
[RequiredActionFunctionToolCall
]]]Run an OpenAI Assistant.
- Example using OpenAI tools:
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable interpreter_assistant = OpenAIAssistantRunnable.create_assistant( name="langchain assistant", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=[{"type": "code_interpreter"}], model="gpt-4-1106-preview" ) output = interpreter_assistant.invoke({"content": "What's 10 - 4 raised to the 2.7"})
- Example using custom tools and AgentExecutor:
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable from langchain.agents import AgentExecutor from langchain.tools import E2BDataAnalysisTool tools = [E2BDataAnalysisTool(api_key="...")] agent = OpenAIAssistantRunnable.create_assistant( name="langchain assistant e2b tool", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=tools, model="gpt-4-1106-preview", as_agent=True ) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"content": "What's 10 - 4 raised to the 2.7"})
- Example using custom tools and custom execution:
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable from langchain.agents import AgentExecutor from langchain_core.agents import AgentFinish from langchain.tools import E2BDataAnalysisTool tools = [E2BDataAnalysisTool(api_key="...")] agent = OpenAIAssistantRunnable.create_assistant( name="langchain assistant e2b tool", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=tools, model="gpt-4-1106-preview", as_agent=True ) def execute_agent(agent, tools, input): tool_map = {tool.name: tool for tool in tools} response = agent.invoke(input) while not isinstance(response, AgentFinish): tool_outputs = [] for action in response: tool_output = tool_map[action.tool].invoke(action.tool_input) tool_outputs.append({"output": tool_output, "tool_call_id": action.tool_call_id}) response = agent.invoke( { "tool_outputs": tool_outputs, "run_id": action.run_id, "thread_id": action.thread_id } ) return response response = execute_agent(agent, tools, {"content": "What's 10 - 4 raised to the 2.7"}) next_response = execute_agent(agent, tools, {"content": "now add 17.241", "thread_id": response.thread_id})
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param as_agent: bool = False¶
Use as a LangChain agent, compatible with the AgentExecutor.
- param assistant_id: str [Required]¶
OpenAI assistant id.
- param check_every_ms: float = 1000.0¶
Frequency with which to check run progress in ms.
- param client: openai.OpenAI [Optional]¶
OpenAI client.
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) Output ¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) RunnableSerializable[Any, Any] ¶
Assigns new fields to the dict output of this runnable. Returns a new runnable.
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] ¶
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
- Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
- async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- bind(**kwargs: Any) Runnable[Input, Output] ¶
Bind arguments to a Runnable, returning a new Runnable.
- config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel] ¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
- Parameters
include – A list of fields to include in the config schema.
- Returns
A pydantic model that can be used to validate config.
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- classmethod create_assistant(name: str, instructions: str, tools: Sequence[Union[BaseTool, dict]], model: str, *, client: Optional[openai.OpenAI] = None, **kwargs: Any) OpenAIAssistantRunnable [source]¶
Create an OpenAI Assistant and instantiate the Runnable.
- Parameters
name – Assistant name.
instructions – Assistant instructions.
tools – Assistant tools. Can be passed in OpenAI format or as BaseTools.
model – Assistant model to use.
client – OpenAI client. Will create default client if not specified.
- Returns
OpenAIAssistantRunnable configured to run using the created assistant.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model ¶
- get_graph(config: Optional[RunnableConfig] = None) Graph ¶
Return a graph representation of this runnable.
- get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
- Parameters
config – A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate input.
- classmethod get_lc_namespace() List[str] ¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]
- get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) str ¶
Get the name of the runnable.
- get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
- Parameters
config – A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate output.
- get_prompts(config: Optional[RunnableConfig] = None) List[BasePromptTemplate] ¶
- invoke(input: dict, config: Optional[RunnableConfig] = None) OutputType [source]¶
Invoke assistant.
- Parameters
input –
Runnable input dict that can have: content: User message when starting a new run. thread_id: Existing thread to use. run_id: Existing run to use. Should only be supplied when providing
the tool output for a required action after an initial invocation.
file_ids: File ids to include in new run. Used for retrieval. message_metadata: Metadata to associate with new message. thread_metadata: Metadata to associate with new thread. Only relevant
when new thread being created.
instructions: Additional run instructions. model: Override Assistant model for this run. tools: Override Assistant tools for this run. run_metadata: Metadata to associate with new run.
config – Runnable config:
- Returns
- If self.as_agent, will return
Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]. Otherwise, will return OpenAI types Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]].
- classmethod is_lc_serializable() bool ¶
Is this class serializable?
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str] ¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- map() Runnable[List[Input], List[Output]] ¶
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- pick(keys: Union[str, List[str]]) RunnableSerializable[Any, Any] ¶
Pick keys from the dict output of this runnable. Returns a new runnable.
- pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) RunnableSerializable[Input, Other] ¶
Compose this runnable with another object to create a RunnableSequence.
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
- to_json_not_implemented() SerializedNotImplemented ¶
- transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶
- with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output] ¶
Bind config to a Runnable, returning a new Runnable.
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) RunnableWithFallbacksT[Input, Output] ¶
Add fallbacks to a runnable, returning a new Runnable.
- Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
- Returns
A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
- with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output] ¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] ¶
Create a new Runnable that retries the original runnable on exceptions.
- Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time between retries
stop_after_attempt – The maximum number of attempts to make before giving up
- Returns
A new Runnable that retries the original runnable on exceptions.
- with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output] ¶
Bind input and output types to a Runnable, returning a new Runnable.
- property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
- property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
- property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
- property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
- property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
- For example,
{“openai_api_key”: “OPENAI_API_KEY”}
- name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
- property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.