langchain.agents.json_chat.base
.create_json_chat_agent¶
- langchain.agents.json_chat.base.create_json_chat_agent(llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate) Runnable [source]¶
Create an agent that uses JSON to format its logic, build for Chat Models.
Examples
from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_json_chat_agent prompt = hub.pull("hwchase17/react-chat-json") model = ChatOpenAI() tools = ... agent = create_json_chat_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } )
- Parameters
llm – LLM to use as the agent.
tools – Tools this agent has access to.
prompt – The prompt to use, must have input keys of tools, tool_names, and agent_scratchpad.
- Returns
A runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish.