Source code for langchain_community.vectorstores.lancedb

from __future__ import annotations

import uuid
from typing import Any, Iterable, List, Optional

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore


[docs]class LanceDB(VectorStore): """`LanceDB` vector store. To use, you should have ``lancedb`` python package installed. Example: .. code-block:: python db = lancedb.connect('./lancedb') table = db.open_table('my_table') vectorstore = LanceDB(table, embedding_function) vectorstore.add_texts(['text1', 'text2']) result = vectorstore.similarity_search('text1') """
[docs] def __init__( self, connection: Any, embedding: Embeddings, vector_key: Optional[str] = "vector", id_key: Optional[str] = "id", text_key: Optional[str] = "text", ): """Initialize with Lance DB connection""" try: import lancedb except ImportError: raise ImportError( "Could not import lancedb python package. " "Please install it with `pip install lancedb`." ) if not isinstance(connection, lancedb.db.LanceTable): raise ValueError( "connection should be an instance of lancedb.db.LanceTable, ", f"got {type(connection)}", ) self._connection = connection self._embedding = embedding self._vector_key = vector_key self._id_key = id_key self._text_key = text_key
@property def embeddings(self) -> Embeddings: return self._embedding
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Turn texts into embedding and add it to the database Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. Returns: List of ids of the added texts. """ # Embed texts and create documents docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] embeddings = self._embedding.embed_documents(list(texts)) for idx, text in enumerate(texts): embedding = embeddings[idx] metadata = metadatas[idx] if metadatas else {} docs.append( { self._vector_key: embedding, self._id_key: ids[idx], self._text_key: text, **metadata, } ) self._connection.add(docs) return ids
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: Any = None, vector_key: Optional[str] = "vector", id_key: Optional[str] = "id", text_key: Optional[str] = "text", **kwargs: Any, ) -> LanceDB: instance = LanceDB( connection, embedding, vector_key, id_key, text_key, ) instance.add_texts(texts, metadatas=metadatas, **kwargs) return instance