Source code for langchain_community.llms.cloudflare_workersai
import json
import logging
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
logger = logging.getLogger(__name__)
[docs]class CloudflareWorkersAI(LLM):
"""Langchain LLM class to help to access Cloudflare Workers AI service.
To use, you must provide an API token and
account ID to access Cloudflare Workers AI, and
pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI
my_account_id = "my_account_id"
my_api_token = "my_secret_api_token"
llm_model = "@cf/meta/llama-2-7b-chat-int8"
cf_ai = CloudflareWorkersAI(
account_id=my_account_id,
api_token=my_api_token,
model=llm_model
)
""" # noqa: E501
account_id: str
api_token: str
model: str = "@cf/meta/llama-2-7b-chat-int8"
base_url: str = "https://api.cloudflare.com/client/v4/accounts"
streaming: bool = False
endpoint_url: str = ""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Cloudflare Workers AI class."""
super().__init__(**kwargs)
self.endpoint_url = f"{self.base_url}/{self.account_id}/ai/run/{self.model}"
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "cloudflare"
@property
def _default_params(self) -> Dict[str, Any]:
"""Default parameters"""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Identifying parameters"""
return {
"account_id": self.account_id,
"api_token": self.api_token,
"model": self.model,
"base_url": self.base_url,
}
def _call_api(self, prompt: str, params: Dict[str, Any]) -> requests.Response:
"""Call Cloudflare Workers API"""
headers = {"Authorization": f"Bearer {self.api_token}"}
data = {"prompt": prompt, "stream": self.streaming, **params}
response = requests.post(self.endpoint_url, headers=headers, json=data)
return response
def _process_response(self, response: requests.Response) -> str:
"""Process API response"""
if response.ok:
data = response.json()
return data["result"]["response"]
else:
raise ValueError(f"Request failed with status {response.status_code}")
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Streaming prediction"""
original_steaming: bool = self.streaming
self.streaming = True
_response_prefix_count = len("data: ")
_response_stream_end = b"data: [DONE]"
for chunk in self._call_api(prompt, kwargs).iter_lines():
if chunk == _response_stream_end:
break
if len(chunk) > _response_prefix_count:
try:
data = json.loads(chunk[_response_prefix_count:])
except Exception as e:
logger.debug(chunk)
raise e
if data is not None and "response" in data:
yield GenerationChunk(text=data["response"])
if run_manager:
run_manager.on_llm_new_token(data["response"])
logger.debug("stream end")
self.streaming = original_steaming
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Regular prediction"""
if self.streaming:
return "".join(
[c.text for c in self._stream(prompt, stop, run_manager, **kwargs)]
)
else:
response = self._call_api(prompt, kwargs)
return self._process_response(response)