Source code for langchain_community.llms.anyscale

"""Wrapper around Anyscale Endpoint"""
from typing import (
    Any,
    AsyncIterator,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Set,
    Tuple,
    cast,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env

from langchain_community.llms.openai import (
    BaseOpenAI,
    acompletion_with_retry,
    completion_with_retry,
)


[docs]def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key]
[docs]def create_llm_result( choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): choice = choices[i] generations.append( [ Generation( text=choice["message"]["content"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) ] ) llm_output = {"token_usage": token_usage, "model_name": model_name} return LLMResult(generations=generations, llm_output=llm_output)
[docs]class Anyscale(BaseOpenAI): """Anyscale large language models. To use, you should have the environment variable ``ANYSCALE_API_BASE`` and ``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.llms import Anyscale anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE", anyscale_api_key="ANYSCALE_API_KEY", model_name="meta-llama/Llama-2-7b-chat-hf") # To leverage Ray for parallel processing @ray.remote(num_cpus=1) def send_query(llm, text): resp = llm(text) return resp futures = [send_query.remote(anyscalellm, text) for text in texts] results = ray.get(futures) """ """Key word arguments to pass to the model.""" anyscale_api_base: Optional[str] = None anyscale_api_key: Optional[SecretStr] = None prefix_messages: List = Field(default_factory=list)
[docs] @classmethod def is_lc_serializable(cls) -> bool: return False
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["anyscale_api_base"] = get_from_dict_or_env( values, "anyscale_api_base", "ANYSCALE_API_BASE" ) values["anyscale_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY") ) try: import openai ## Always create ChatComplete client, replacing the legacy Complete client values["client"] = openai.ChatCompletion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_name": self.model_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(), "api_base": self.anyscale_api_base, } return {**openai_creds, **{"model": self.model_name}, **super()._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "Anyscale LLM" def _get_chat_messages( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"Anyscale currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = self._invocation_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for Chat api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs, "stream": True} for stream_resp in completion_with_retry( self, messages=messages, run_manager=run_manager, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: run_manager.on_llm_new_token(token, chunk=chunk) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs, "stream": True} async for stream_resp in await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: await run_manager.on_llm_new_token(token, chunk=chunk) def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: choices = [] token_usage: Dict[str, int] = {} _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for prompt in prompts: if self.streaming: generation: Optional[GenerationChunk] = None for chunk in self._stream(prompt, stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "message": {"content": generation.text}, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs} response = completion_with_retry( self, messages=messages, run_manager=run_manager, **params ) choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) return create_llm_result(choices, prompts, token_usage, self.model_name) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: choices = [] token_usage: Dict[str, int] = {} _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for prompt in prompts: messages = self.prefix_messages + [{"role": "user", "content": prompt}] if self.streaming: generation: Optional[GenerationChunk] = None async for chunk in self._astream(prompt, stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "message": {"content": generation.text}, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs} response = await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ) choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) return create_llm_result(choices, prompts, token_usage, self.model_name)