Source code for langchain_community.embeddings.gpt4all
from typing import Any, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, root_validator
[docs]class GPT4AllEmbeddings(BaseModel, Embeddings):
"""GPT4All embedding models.
To use, you should have the gpt4all python package installed
Example:
.. code-block:: python
from langchain_community.embeddings import GPT4AllEmbeddings
embeddings = GPT4AllEmbeddings()
"""
client: Any #: :meta private:
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that GPT4All library is installed."""
try:
from gpt4all import Embed4All
values["client"] = Embed4All()
except ImportError:
raise ImportError(
"Could not import gpt4all library. "
"Please install the gpt4all library to "
"use this embedding model: pip install gpt4all"
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using GPT4All.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using GPT4All.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]