Source code for langchain_community.chat_models.wasm_chat

import json
import logging
from typing import Any, Dict, List, Mapping, Optional

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import root_validator
from langchain_core.utils import get_pydantic_field_names

logger = logging.getLogger(__name__)


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    role = _dict["role"]
    if role == "user":
        return HumanMessage(content=_dict["content"])
    elif role == "assistant":
        return AIMessage(content=_dict.get("content", "") or "")
    else:
        return ChatMessage(content=_dict["content"], role=role)


def _convert_message_to_dict(message: BaseMessage) -> dict:
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
    else:
        raise TypeError(f"Got unknown type {message}")

    return message_dict


[docs]class WasmChatService(BaseChatModel): """Chat with LLMs via `llama-api-server` For the information about `llama-api-server`, visit https://github.com/second-state/llama-utils """ request_timeout: int = 60 """request timeout for chat http requests""" service_url: Optional[str] = None """URL of WasmChat service""" model: str = "NA" """model name, default is `NA`.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: res = self._chat(messages, **kwargs) if res.status_code != 200: raise ValueError(f"Error code: {res.status_code}, reason: {res.reason}") response = res.json() return self._create_chat_result(response) def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: if self.service_url is None: res = requests.models.Response() res.status_code = 503 res.reason = "The IP address or port of the chat service is incorrect." return res service_url = f"{self.service_url}/v1/chat/completions" payload = { "model": self.model, "messages": [_convert_message_to_dict(m) for m in messages], } res = requests.post( url=service_url, timeout=self.request_timeout, headers={ "accept": "application/json", "Content-Type": "application/json", }, data=json.dumps(payload), ) return res def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: message = _convert_dict_to_message(response["choices"][0].get("message")) generations = [ChatGeneration(message=message)] token_usage = response["usage"] llm_output = {"token_usage": token_usage, "model": self.model} return ChatResult(generations=generations, llm_output=llm_output) @property def _llm_type(self) -> str: return "wasm-chat"