Source code for langchain_community.chat_models.azureml_endpoint

import json
from typing import Any, Dict, List, Optional, cast

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import SimpleChatModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.pydantic_v1 import SecretStr, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env

from langchain_community.llms.azureml_endpoint import (
    AzureMLEndpointClient,
    ContentFormatterBase,
)


[docs]class LlamaContentFormatter(ContentFormatterBase): """Content formatter for `LLaMA`.""" SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"] @staticmethod def _convert_message_to_dict(message: BaseMessage) -> Dict: """Converts message to a dict according to role""" content = cast(str, message.content) if isinstance(message, HumanMessage): return { "role": "user", "content": ContentFormatterBase.escape_special_characters(content), } elif isinstance(message, AIMessage): return { "role": "assistant", "content": ContentFormatterBase.escape_special_characters(content), } elif isinstance(message, SystemMessage): return { "role": "system", "content": ContentFormatterBase.escape_special_characters(content), } elif ( isinstance(message, ChatMessage) and message.role in LlamaContentFormatter.SUPPORTED_ROLES ): return { "role": message.role, "content": ContentFormatterBase.escape_special_characters(content), } else: supported = ",".join( [role for role in LlamaContentFormatter.SUPPORTED_ROLES] ) raise ValueError( f"""Received unsupported role. Supported roles for the LLaMa Foundation Model: {supported}""" ) def _format_request_payload( self, messages: List[BaseMessage], model_kwargs: Dict ) -> bytes: chat_messages = [ LlamaContentFormatter._convert_message_to_dict(message) for message in messages ] prompt = json.dumps( {"input_data": {"input_string": chat_messages, "parameters": model_kwargs}} ) return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs)
[docs] def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request according to the chosen api""" return str.encode(prompt)
[docs] def format_response_payload(self, output: bytes) -> str: """Formats response""" return json.loads(output)["output"]
[docs]class AzureMLChatOnlineEndpoint(SimpleChatModel): """`AzureML` Chat models API. Example: .. code-block:: python azure_chat = AzureMLChatOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", content_formatter=content_formatter, ) """ endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_key: SecretStr = convert_to_secret_str("") """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" http_client: Any = None #: :meta private: content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" @validator("http_client", always=True, allow_reuse=True) @classmethod def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient: """Validate that api key and python package exist in environment.""" values["endpoint_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY") ) endpoint_url = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) http_client = AzureMLEndpointClient( endpoint_url, values["endpoint_api_key"].get_secret_value() ) return http_client @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_chat_endpoint" def _call( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to an AzureML Managed Online endpoint. Args: messages: The messages in the conversation with the chat model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} request_payload = self.content_formatter._format_request_payload( messages, _model_kwargs ) response_payload = self.http_client.call(request_payload, **kwargs) generated_text = self.content_formatter.format_response_payload( response_payload ) return generated_text