Source code for langchain_community.agent_toolkits.sql.base

"""SQL agent."""
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence

from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import AIMessage, SystemMessage
from langchain_core.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
)

from langchain_community.agent_toolkits.sql.prompt import (
    SQL_FUNCTIONS_SUFFIX,
    SQL_PREFIX,
    SQL_SUFFIX,
)
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.tools import BaseTool

if TYPE_CHECKING:
    from langchain.agents.agent import AgentExecutor
    from langchain.agents.agent_types import AgentType


[docs]def create_sql_agent( llm: BaseLanguageModel, toolkit: SQLDatabaseToolkit, agent_type: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: Optional[str] = None, format_instructions: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, extra_tools: Sequence[BaseTool] = (), **kwargs: Any, ) -> AgentExecutor: """Construct an SQL agent from an LLM and tools.""" from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.chains.llm import LLMChain agent_type = agent_type or AgentType.ZERO_SHOT_REACT_DESCRIPTION tools = toolkit.get_tools() + list(extra_tools) prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt_params = ( {"format_instructions": format_instructions} if format_instructions is not None else {} ) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix or SQL_SUFFIX, input_variables=input_variables, **prompt_params, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) elif agent_type == AgentType.OPENAI_FUNCTIONS: messages = [ SystemMessage(content=prefix), HumanMessagePromptTemplate.from_template("{input}"), AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX), MessagesPlaceholder(variable_name="agent_scratchpad"), ] input_variables = ["input", "agent_scratchpad"] _prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )