langchain_community.vectorstores.tiledb
.TileDB¶
- class langchain_community.vectorstores.tiledb.TileDB(embedding: Embeddings, index_uri: str, metric: str, *, vector_index_uri: str = '', docs_array_uri: str = '', config: Optional[Mapping[str, Any]] = None, timestamp: Any = None, **kwargs: Any)[source]¶
Wrapper around TileDB vector database.
To use, you should have the
tiledb-vector-search
python package installed.Example
from langchain_community import TileDB embeddings = OpenAIEmbeddings() db = TileDB(embeddings, index_uri, metric)
Initialize with necessary components.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(embedding, index_uri, metric, *[, ...])Initialize with necessary components.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids, timestamp])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
consolidate_updates
(**kwargs)create
(index_uri, index_type, dimensions, ...)delete
([ids, timestamp])Delete by vector ID or other criteria.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding, ...)Construct TileDB index from embeddings.
from_texts
(texts, embedding[, metadatas, ...])Construct a TileDB index from raw documents.
load
(index_uri, embedding, *[, metric, ...])Load a TileDB index from a URI.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
Return docs and their similarity scores selected using the maximal marginal
process_index_results
(ids, scores, *[, k, ...])Turns TileDB results into a list of documents and scores.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter, fetch_k])Return docs most similar to query.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query, *[, k, ...])Return docs most similar to query.
Return docs most similar to query.
- __init__(embedding: Embeddings, index_uri: str, metric: str, *, vector_index_uri: str = '', docs_array_uri: str = '', config: Optional[Mapping[str, Any]] = None, timestamp: Any = None, **kwargs: Any)[source]¶
Initialize with necessary components.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, timestamp: int = 0, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
ids – Optional ids of each text object.
timestamp – Optional timestamp to write new texts with.
kwargs – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- classmethod create(index_uri: str, index_type: str, dimensions: int, vector_type: dtype, *, metadatas: bool = True, config: Optional[Mapping[str, Any]] = None) None [source]¶
- delete(ids: Optional[List[str]] = None, timestamp: int = 0, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
timestamp – Optional timestamp to delete with.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, index_uri: str, *, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, metric: str = 'euclidean', index_type: str = 'FLAT', config: Optional[Mapping[str, Any]] = None, index_timestamp: int = 0, **kwargs: Any) TileDB [source]¶
Construct TileDB index from embeddings.
- Parameters
text_embeddings – List of tuples of (text, embedding)
embedding – Embedding function to use.
index_uri – The URI to write the TileDB arrays
metadatas – List of metadata dictionaries to associate with documents.
metric – Optional, Metric to use for indexing. Defaults to “euclidean”.
index_type – Optional, Vector index type (“FLAT”, IVF_FLAT”)
config – Optional, TileDB config
index_timestamp – Optional, timestamp to write new texts with.
Example
from langchain_community import TileDB from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) db = TileDB.from_embeddings(text_embedding_pairs, embeddings)
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, metric: str = 'euclidean', index_uri: str = '/tmp/tiledb_array', index_type: str = 'FLAT', config: Optional[Mapping[str, Any]] = None, index_timestamp: int = 0, **kwargs: Any) TileDB [source]¶
Construct a TileDB index from raw documents.
- Parameters
texts – List of documents to index.
embedding – Embedding function to use.
metadatas – List of metadata dictionaries to associate with documents.
ids – Optional ids of each text object.
metric – Metric to use for indexing. Defaults to “euclidean”.
index_uri – The URI to write the TileDB arrays
index_type – Optional, Vector index type (“FLAT”, IVF_FLAT”)
config – Optional, TileDB config
index_timestamp – Optional, timestamp to write new texts with.
Example
from langchain_community import TileDB from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() index = TileDB.from_texts(texts, embeddings)
- classmethod load(index_uri: str, embedding: Embeddings, *, metric: str = 'euclidean', config: Optional[Mapping[str, Any]] = None, timestamp: Any = None, **kwargs: Any) TileDB [source]¶
Load a TileDB index from a URI.
- Parameters
index_uri – The URI of the TileDB vector index.
embedding – Embeddings to use when generating queries.
metric – Optional, Metric to use for indexing. Defaults to “euclidean”.
config – Optional, TileDB config
timestamp – Optional, timestamp to use for opening the arrays.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch before filtering (if needed) to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- Return docs and their similarity scores selected using the maximal marginal
relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch before filtering to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
- List of Documents and similarity scores selected by maximal marginal
relevance and score for each.
- process_index_results(ids: List[int], scores: List[float], *, k: int = 4, filter: Optional[Dict[str, Any]] = None, score_threshold: float = 1.7976931348623157e+308) List[Tuple[Document, float]] [source]¶
Turns TileDB results into a list of documents and scores.
- Parameters
ids – List of indices of the documents in the index.
scores – List of distances of the documents in the index.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) – Filter by metadata. Defaults to None.
score_threshold – Optional, a floating point value to filter the resulting set of retrieved docs
- Returns
List of Documents and scores.
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter – (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
- Returns
List of Documents most similar to the query.
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
- Returns
List of Documents most similar to the embedding.
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- similarity_search_with_score(query: str, *, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
- Returns
List of documents most similar to the query text with Distance as float. Lower score represents more similarity.
- similarity_search_with_score_by_vector(embedding: List[float], *, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
embedding – Embedding vector to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) – Filter by metadata. Defaults to None.
fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20.
**kwargs –
kwargs to be passed to similarity search. Can include: nprobe: Optional, number of partitions to check if using IVF_FLAT index score_threshold: Optional, a floating point value to filter the
resulting set of retrieved docs
- Returns
List of documents most similar to the query text and distance in float for each. Lower score represents more similarity.