langchain_community.vectorstores.supabase
.SupabaseVectorStore¶
- class langchain_community.vectorstores.supabase.SupabaseVectorStore(client: supabase.client.Client, embedding: Embeddings, table_name: str, chunk_size: int = 500, query_name: Union[str, None] = None)[source]¶
Supabase Postgres vector store.
It assumes you have the pgvector extension installed and a match_documents (or similar) function. For more details: https://integrations.langchain.com/vectorstores?integration_name=SupabaseVectorStore
You can implement your own match_documents function in order to limit the search space to a subset of documents based on your own authorization or business logic.
Note that the Supabase Python client does not yet support async operations.
If you’d like to use max_marginal_relevance_search, please review the instructions below on modifying the match_documents function to return matched embeddings.
Examples:
from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_core.documents import Document from langchain_community.vectorstores import SupabaseVectorStore from supabase.client import create_client docs = [ Document(page_content="foo", metadata={"id": 1}), ] embeddings = OpenAIEmbeddings() supabase_client = create_client("my_supabase_url", "my_supabase_key") vector_store = SupabaseVectorStore.from_documents( docs, embeddings, client=supabase_client, table_name="documents", query_name="match_documents", chunk_size=500, )
To load from an existing table:
from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import SupabaseVectorStore from supabase.client import create_client embeddings = OpenAIEmbeddings() supabase_client = create_client("my_supabase_url", "my_supabase_key") vector_store = SupabaseVectorStore( client=supabase_client, embedding=embeddings, table_name="documents", query_name="match_documents", )
Initialize with supabase client.
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
(client, embedding, table_name[, ...])Initialize with supabase client.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
add_vectors
(vectors, documents, ids)adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
delete
([ids])Delete by vector IDs.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from texts and embeddings.
match_args
(query, filter)max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Return docs most similar to query.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(*args, **kwargs)Run similarity search with distance.
- __init__(client: supabase.client.Client, embedding: Embeddings, table_name: str, chunk_size: int = 500, query_name: Union[str, None] = None) None [source]¶
Initialize with supabase client.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- add_vectors(vectors: List[List[float]], documents: List[Document], ids: List[str]) List[str] [source]¶
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- delete(ids: Optional[List[str]] = None, **kwargs: Any) None [source]¶
Delete by vector IDs.
- Parameters
ids – List of ids to delete.
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[supabase.client.Client] = None, table_name: Optional[str] = 'documents', query_name: Union[str, None] = 'match_documents', chunk_size: int = 500, ids: Optional[List[str]] = None, **kwargs: Any) SupabaseVectorStore [source]¶
Return VectorStore initialized from texts and embeddings.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search requires that query_name returns matched embeddings alongside the match documents. The following function demonstrates how to do this:
```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536),
match_count int)
- RETURNS TABLE(
id uuid, content text, metadata jsonb, embedding vector(1536), similarity float)
LANGUAGE plpgsql AS $$ # variable_conflict use_column
- BEGIN
RETURN query SELECT
id, content, metadata, embedding, 1 -(docstore.embedding <=> query_embedding) AS similarity
- FROM
docstore
- ORDER BY
docstore.embedding <=> query_embedding
LIMIT match_count;
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to query.
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
- Returns
List of Documents most similar to the query vector.
- similarity_search_by_vector_returning_embeddings(query: List[float], k: int, filter: Optional[Dict[str, Any]] = None, postgrest_filter: Optional[str] = None) List[Tuple[Document, float, ndarray[float32, Any]]] [source]¶
- similarity_search_by_vector_with_relevance_scores(query: List[float], k: int, filter: Optional[Dict[str, Any]] = None, postgrest_filter: Optional[str] = None) List[Tuple[Document, float]] [source]¶
- similarity_search_with_relevance_scores(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)