langchain_community.vectorstores.pgvector
.PGVector¶
- class langchain_community.vectorstores.pgvector.PGVector(connection_string: str, embedding_function: Embeddings, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, *, connection: Optional[Connection] = None, engine_args: Optional[dict[str, Any]] = None)[source]¶
Postgres/PGVector vector store.
To use, you should have the
pgvector
python package installed.- Parameters
connection_string – Postgres connection string.
embedding_function – Any embedding function implementing langchain.embeddings.base.Embeddings interface.
collection_name – The name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables.
distance_strategy – The distance strategy to use. (default: COSINE)
pre_delete_collection – If True, will delete the collection if it exists. (default: False). Useful for testing.
engine_args – SQLAlchemy’s create engine arguments.
Example
from langchain_community.vectorstores import PGVector from langchain_community.embeddings.openai import OpenAIEmbeddings CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = PGVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, connection_string=CONNECTION_STRING, )
Attributes
distance_strategy
embeddings
Access the query embedding object if available.
Methods
__init__
(connection_string, embedding_function)aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_embeddings
(texts, embeddings[, ...])Add embeddings to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(*args, **kwargs)Run similarity search with distance asynchronously.
connect
()connection_string_from_db_params
(driver, ...)Return connection string from database parameters.
delete
([ids])Delete vectors by ids or uuids.
from_documents
(documents, embedding[, ...])Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding)Construct PGVector wrapper from raw documents and pre- generated embeddings.
from_existing_index
(embedding[, ...])Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
from_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from texts and embeddings.
get_collection
(session)get_connection_string
(kwargs)max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance
Return docs selected using the maximal marginal relevance with score.
Return docs selected using the maximal marginal relevance with score
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Run similarity search with PGVector with distance.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)- __init__(connection_string: str, embedding_function: Embeddings, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, *, connection: Optional[Connection] = None, engine_args: Optional[dict[str, Any]] = None) None [source]¶
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add embeddings to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
embeddings – List of list of embedding vectors.
metadatas – List of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Return VectorStore initialized from texts and embeddings.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to query.
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Return docs most similar to embedding vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Run similarity search with distance asynchronously.
- classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) str [source]¶
Return connection string from database parameters.
- delete(ids: Optional[List[str]] = None, **kwargs: Any) None [source]¶
Delete vectors by ids or uuids.
- Parameters
ids – List of ids to delete.
- classmethod from_documents(documents: List[Document], embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable.
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Construct PGVector wrapper from raw documents and pre- generated embeddings.
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable.
Example
from langchain_community.vectorstores import PGVector from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
- classmethod from_existing_index(embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
- Return docs selected using the maximal marginal relevance
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs selected using the maximal marginal relevance with score.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- Return docs selected using the maximal marginal relevance with score
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with PGVector with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query.
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query vector.
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each.