langchain.text_splitter.PythonCodeTextSplitter¶
- class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]¶
Attempts to split the text along Python syntax.
Initialize a PythonCodeTextSplitter.
Methods
__init__(**kwargs)Initialize a PythonCodeTextSplitter.
atransform_documents(documents, **kwargs)Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)Text splitter that uses HuggingFace tokenizer to count length.
from_language(language, **kwargs)from_tiktoken_encoder([encoding_name, ...])Text splitter that uses tiktoken encoder to count length.
get_separators_for_language(language)split_documents(documents)Split documents.
split_text(text)Split text into multiple components.
transform_documents(documents, **kwargs)Transform sequence of documents by splitting them.
- async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
- create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) List[Document]¶
Create documents from a list of texts.
- classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
- classmethod from_language(language: Language, **kwargs: Any) RecursiveCharacterTextSplitter¶
- classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) TS¶
Text splitter that uses tiktoken encoder to count length.
- split_text(text: str) List[str]¶
Split text into multiple components.