langchain_core.prompts.prompt.PromptTemplate

class langchain_core.prompts.prompt.PromptTemplate[source]

Bases: StringPromptTemplate

A prompt template for a language model.

A prompt template consists of a string template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model.

The template can be formatted using either f-strings (default) or jinja2 syntax.

Security warning: Prefer using template_format=”f-string” instead of

template_format=”jinja2”, or make sure to NEVER accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution.

As of LangChain 0.0.329, Jinja2 templates will be rendered using Jinja2’s SandboxedEnvironment by default. This sand-boxing should be treated as a best-effort approach rather than a guarantee of security, as it is an opt-out rather than opt-in approach.

Despite the sand-boxing, we recommend to never use jinja2 templates from untrusted sources.

Example

from langchain_core.prompts import PromptTemplate

# Instantiation using from_template (recommended)
prompt = PromptTemplate.from_template("Say {foo}")
prompt.format(foo="bar")

# Instantiation using initializer
prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}")

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param input_types: Dict[str, Any] [Optional]

A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.

param input_variables: List[str] [Required]

A list of the names of the variables the prompt template expects.

param output_parser: Optional[BaseOutputParser] = None

How to parse the output of calling an LLM on this formatted prompt.

param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]
param template: str [Required]

The prompt template.

param template_format: Union[Literal['f-string'], Literal['jinja2']] = 'f-string'

The format of the prompt template. Options are: ‘f-string’, ‘jinja2’.

param validate_template: bool = False

Whether or not to try validating the template.

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.

async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) Output

Default implementation of ainvoke, calls invoke from a thread.

The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.

Subclasses should override this method if they can run asynchronously.

async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.

async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]

Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The jsonpatch ops can be applied in order to construct state.

Parameters
  • input – The input to the runnable.

  • config – The config to use for the runnable.

  • diff – Whether to yield diffs between each step, or the current state.

  • with_streamed_output_list – Whether to yield the streamed_output list.

  • include_names – Only include logs with these names.

  • include_types – Only include logs with these types.

  • include_tags – Only include logs with these tags.

  • exclude_names – Exclude logs with these names.

  • exclude_types – Exclude logs with these types.

  • exclude_tags – Exclude logs with these tags.

async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.

batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.

bind(**kwargs: Any) Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel]

The type of config this runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters

include – A list of fields to include in the config schema.

Returns

A pydantic model that can be used to validate config.

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(**kwargs: Any) Dict

Return dictionary representation of prompt.

format(**kwargs: Any) str[source]

Format the prompt with the inputs.

Parameters

kwargs – Any arguments to be passed to the prompt template.

Returns

A formatted string.

Example

prompt.format(variable1="foo")
format_prompt(**kwargs: Any) PromptValue

Create Chat Messages.

classmethod from_examples(examples: List[str], suffix: str, input_variables: List[str], example_separator: str = '\n\n', prefix: str = '', **kwargs: Any) PromptTemplate[source]

Take examples in list format with prefix and suffix to create a prompt.

Intended to be used as a way to dynamically create a prompt from examples.

Parameters
  • examples – List of examples to use in the prompt.

  • suffix – String to go after the list of examples. Should generally set up the user’s input.

  • input_variables – A list of variable names the final prompt template will expect.

  • example_separator – The separator to use in between examples. Defaults to two new line characters.

  • prefix – String that should go before any examples. Generally includes examples. Default to an empty string.

Returns

The final prompt generated.

classmethod from_file(template_file: Union[str, Path], input_variables: Optional[List[str]] = None, **kwargs: Any) PromptTemplate[source]

Load a prompt from a file.

Parameters
  • template_file – The path to the file containing the prompt template.

  • input_variables – [DEPRECATED] A list of variable names the final prompt template will expect.

input_variables is ignored as from_file now delegates to from_template().

Returns

The prompt loaded from the file.

classmethod from_orm(obj: Any) Model
classmethod from_template(template: str, *, template_format: str = 'f-string', partial_variables: Optional[Dict[str, Any]] = None, **kwargs: Any) PromptTemplate[source]

Load a prompt template from a template.

Security warning: Prefer using template_format=”f-string” instead of

template_format=”jinja2”, or make sure to NEVER accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution.

As of LangChain 0.0.329, Jinja2 templates will be rendered using Jinja2’s SandboxedEnvironment by default. This sand-boxing should be treated as a best-effort approach rather than a guarantee of security, as it is an opt-out rather than opt-in approach.

Despite the sand-boxing, we recommend to never use jinja2 templates from untrusted sources.

Parameters
  • template – The template to load.

  • template_format – The format of the template. Use jinja2 for jinja2, and f-string or None for f-strings.

  • partial_variables

    A dictionary of variables that can be used to partially

    fill in the template. For example, if the template is

    ”{variable1} {variable2}”, and partial_variables is {“variable1”: “foo”}, then the final prompt will be “foo {variable2}”.

Returns

The prompt template loaded from the template.

get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]

Get a pydantic model that can be used to validate input to the runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters

config – A config to use when generating the schema.

Returns

A pydantic model that can be used to validate input.

classmethod get_lc_namespace() List[str][source]

Get the namespace of the langchain object.

get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel]

Get a pydantic model that can be used to validate output to the runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters

config – A config to use when generating the schema.

Returns

A pydantic model that can be used to validate output.

invoke(input: Dict, config: Optional[RunnableConfig] = None) PromptValue

Transform a single input into an output. Override to implement.

Parameters
  • input – The input to the runnable.

  • config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

Returns

The output of the runnable.

classmethod is_lc_serializable() bool

Return whether this class is serializable.

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod lc_id() List[str]

A unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

map() Runnable[List[Input], List[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod parse_obj(obj: Any) Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
partial(**kwargs: Union[str, Callable[[], str]]) BasePromptTemplate

Return a partial of the prompt template.

save(file_path: Union[Path, str]) None

Save the prompt.

Parameters

file_path – Path to directory to save prompt to.

Example: .. code-block:: python

prompt.save(file_path=”path/prompt.yaml”)

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.

to_json() Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) Model
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) RunnableWithFallbacksT[Input, Output]

Add fallbacks to a runnable, returning a new Runnable.

Parameters
  • fallbacks – A sequence of runnables to try if the original runnable fails.

  • exceptions_to_handle – A tuple of exception types to handle.

Returns

A new Runnable that will try the original runnable, and then each fallback in order, upon failures.

with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output]

Create a new Runnable that retries the original runnable on exceptions.

Parameters
  • retry_if_exception_type – A tuple of exception types to retry on

  • wait_exponential_jitter – Whether to add jitter to the wait time between retries

  • stop_after_attempt – The maximum number of attempts to make before giving up

Returns

A new Runnable that retries the original runnable on exceptions.

with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

property InputType: Type[langchain_core.runnables.utils.Input]

The type of input this runnable accepts specified as a type annotation.

property OutputType: Any

The type of output this runnable produces specified as a type annotation.

property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]

List configurable fields for this runnable.

property input_schema: Type[pydantic.main.BaseModel]

The type of input this runnable accepts specified as a pydantic model.

property lc_attributes: Dict[str, Any]

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

property lc_secrets: Dict[str, str]

A map of constructor argument names to secret ids.

For example,

{“openai_api_key”: “OPENAI_API_KEY”}

property output_schema: Type[pydantic.main.BaseModel]

The type of output this runnable produces specified as a pydantic model.

Examples using PromptTemplate