langchain_community.embeddings.baidu_qianfan_endpoint
.QianfanEmbeddingsEndpoint¶
- class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]¶
Bases:
BaseModel
,Embeddings
Baidu Qianfan Embeddings embedding models.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param chunk_size: int = 16¶
Chunk size when multiple texts are input
- param client: Any = None¶
Qianfan client
- param endpoint: str = ''¶
Endpoint of the Qianfan Embedding, required if custom model used.
- param max_retries: int = 5¶
Max reties times
- param model: str = 'Embedding-V1'¶
Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
for now, we support Embedding-V1 and - Embedding-V1 (默认模型) - bge-large-en - bge-large-zh
preset models are mapping to an endpoint. model will be ignored if endpoint is set
- param qianfan_ak: Optional[str] = None¶
Qianfan application apikey
- param qianfan_sk: Optional[str] = None¶
Qianfan application secretkey
- async aembed_documents(texts: List[str]) List[List[float]] [source]¶
Asynchronous Embed search docs.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embeds a list of text documents using the AutoVOT algorithm.
- Parameters
texts (List[str]) – A list of text documents to embed.
- Returns
- A list of embeddings for each document in the input list.
Each embedding is represented as a list of float values.
- Return type
List[List[float]]
- classmethod from_orm(obj: Any) Model ¶
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶