langchain.agents.schema
.AgentScratchPadChatPromptTemplate¶
- class langchain.agents.schema.AgentScratchPadChatPromptTemplate[source]¶
Bases:
ChatPromptTemplate
Chat prompt template for the agent scratchpad.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param input_types: Dict[str, Any] [Optional]¶
A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.
- param input_variables: List[str] [Required]¶
List of input variables in template messages. Used for validation.
- param messages: List[MessageLike] [Required]¶
List of messages consisting of either message prompt templates or messages.
- param output_parser: Optional[BaseOutputParser] = None¶
How to parse the output of calling an LLM on this formatted prompt.
- param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶
- param validate_template: bool = False¶
Whether or not to try validating the template.
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) Output ¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- append(message: Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]) None ¶
Append message to the end of the chat template.
- Parameters
message – representation of a message to append.
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] ¶
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
- Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
- async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
- bind(**kwargs: Any) Runnable[Input, Output] ¶
Bind arguments to a Runnable, returning a new Runnable.
- config_schema(*, include: Optional[Sequence[str]] = None) Type[BaseModel] ¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
- Parameters
include – A list of fields to include in the config schema.
- Returns
A pydantic model that can be used to validate config.
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(**kwargs: Any) Dict ¶
Return dictionary representation of prompt.
- extend(messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]]) None ¶
Extend the chat template with a sequence of messages.
- format(**kwargs: Any) str ¶
Format the chat template into a string.
- Parameters
**kwargs – keyword arguments to use for filling in template variables in all the template messages in this chat template.
- Returns
formatted string
- format_messages(**kwargs: Any) List[BaseMessage] ¶
Format the chat template into a list of finalized messages.
- Parameters
**kwargs – keyword arguments to use for filling in template variables in all the template messages in this chat template.
- Returns
list of formatted messages
- format_prompt(**kwargs: Any) PromptValue ¶
Format prompt. Should return a PromptValue. :param **kwargs: Keyword arguments to use for formatting.
- Returns
PromptValue.
- classmethod from_messages(messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate, Tuple[str, str], Tuple[Type, str], str]]) ChatPromptTemplate ¶
Create a chat prompt template from a variety of message formats.
Examples
Instantiation from a list of message templates:
template = ChatPromptTemplate.from_messages([ ("human", "Hello, how are you?"), ("ai", "I'm doing well, thanks!"), ("human", "That's good to hear."), ])
Instantiation from mixed message formats:
template = ChatPromptTemplate.from_messages([ SystemMessage(content="hello"), ("human", "Hello, how are you?"), ])
- Parameters
messages – sequence of message representations. A message can be represented using the following formats: (1) BaseMessagePromptTemplate, (2) BaseMessage, (3) 2-tuple of (message type, template); e.g., (“human”, “{user_input}”), (4) 2-tuple of (message class, template), (4) a string which is shorthand for (“human”, template); e.g., “{user_input}”
- Returns
a chat prompt template
- classmethod from_orm(obj: Any) Model ¶
- classmethod from_role_strings(string_messages: List[Tuple[str, str]]) ChatPromptTemplate ¶
[Deprecated] Create a chat prompt template from a list of (role, template) tuples.
- Parameters
string_messages – list of (role, template) tuples.
string_messages – list of (role, template) tuples.
- Returns
a chat prompt template[Deprecated] Create a chat prompt template from a list of (role, template) tuples.
- Returns
a chat prompt template
Notes
Deprecated since version 0.0.260: Use from_messages classmethod instead.
- classmethod from_strings(string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]]) ChatPromptTemplate ¶
[Deprecated] Create a chat prompt template from a list of (role class, template) tuples.
- Parameters
string_messages – list of (role class, template) tuples.
string_messages – list of (role class, template) tuples.
- Returns
a chat prompt template[Deprecated] Create a chat prompt template from a list of (role class, template) tuples.
- Returns
a chat prompt template
Notes
Deprecated since version 0.0.260: Use from_messages classmethod instead.
- classmethod from_template(template: str, **kwargs: Any) ChatPromptTemplate ¶
Create a chat prompt template from a template string.
Creates a chat template consisting of a single message assumed to be from the human.
- Parameters
template – template string
**kwargs – keyword arguments to pass to the constructor.
- Returns
A new instance of this class.
- get_input_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
- Parameters
config – A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate input.
- classmethod get_lc_namespace() List[str] ¶
Get the namespace of the langchain object.
- get_output_schema(config: Optional[RunnableConfig] = None) Type[BaseModel] ¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
- Parameters
config – A config to use when generating the schema.
- Returns
A pydantic model that can be used to validate output.
- invoke(input: Dict, config: Optional[RunnableConfig] = None) PromptValue ¶
Transform a single input into an output. Override to implement.
- Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
- Returns
The output of the runnable.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod lc_id() List[str] ¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
- map() Runnable[List[Input], List[Output]] ¶
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- partial(**kwargs: Union[str, Callable[[], str]]) ChatPromptTemplate ¶
Get a new ChatPromptTemplate with some input variables already filled in.
- Parameters
**kwargs – keyword arguments to use for filling in template variables. Ought to be a subset of the input variables.
- Returns
A new ChatPromptTemplate.
Example
from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate.from_messages( [ ("system", "You are an AI assistant named {name}."), ("human", "Hi I'm {user}"), ("ai", "Hi there, {user}, I'm {name}."), ("human", "{input}"), ] ) template2 = template.partial(user="Lucy", name="R2D2") template2.format_messages(input="hello")
- save(file_path: Union[Path, str]) None ¶
Save prompt to file.
- Parameters
file_path – path to file.
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
- to_json_not_implemented() SerializedNotImplemented ¶
- transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶
- with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) Runnable[Input, Output] ¶
Bind config to a Runnable, returning a new Runnable.
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) RunnableWithFallbacksT[Input, Output] ¶
Add fallbacks to a runnable, returning a new Runnable.
- Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
- Returns
A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
- with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) Runnable[Input, Output] ¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] ¶
Create a new Runnable that retries the original runnable on exceptions.
- Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time between retries
stop_after_attempt – The maximum number of attempts to make before giving up
- Returns
A new Runnable that retries the original runnable on exceptions.
- with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) Runnable[Input, Output] ¶
Bind input and output types to a Runnable, returning a new Runnable.
- property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
- property OutputType: Any¶
The type of output this runnable produces specified as a type annotation.
- property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
- property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
- property lc_attributes: Dict¶
Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor.
- property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
- For example,
{“openai_api_key”: “OPENAI_API_KEY”}
- property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.