langchain.agents.agent.LLMSingleActionAgent¶
- class langchain.agents.agent.LLMSingleActionAgent[source]¶
- Bases: - BaseSingleActionAgent- Base class for single action agents. - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param llm_chain: langchain.chains.llm.LLMChain [Required]¶
- LLMChain to use for agent. 
 - param output_parser: langchain.agents.agent.AgentOutputParser [Required]¶
- Output parser to use for agent. 
 - param stop: List[str] [Required]¶
- List of strings to stop on. 
 - async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish][source]¶
- Given input, decided what to do. - Parameters
- intermediate_steps – Steps the LLM has taken to date, along with observations 
- callbacks – Callbacks to run. 
- **kwargs – User inputs. 
 
- Returns
- Action specifying what tool to use. 
 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model¶
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model¶
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include – fields to include in new model 
- exclude – fields to exclude from new model, as with values this takes precedence over include 
- update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep – set to True to make a deep copy of the model 
 
- Returns
- new model instance 
 
 - classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any) BaseSingleActionAgent¶
 - classmethod from_orm(obj: Any) Model¶
 - get_allowed_tools() Optional[List[str]]¶
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode¶
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
 - classmethod parse_obj(obj: Any) Model¶
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
 - plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish][source]¶
- Given input, decided what to do. - Parameters
- intermediate_steps – Steps the LLM has taken to date, along with the observations. 
- callbacks – Callbacks to run. 
- **kwargs – User inputs. 
 
- Returns
- Action specifying what tool to use. 
 
 - return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish¶
- Return response when agent has been stopped due to max iterations. 
 - save(file_path: Union[Path, str]) None¶
- Save the agent. - Parameters
- file_path – Path to file to save the agent to. 
 - Example: .. code-block:: python - # If working with agent executor agent.agent.save(file_path=”path/agent.yaml”) 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny¶
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode¶
 - classmethod update_forward_refs(**localns: Any) None¶
- Try to update ForwardRefs on fields based on this Model, globalns and localns. 
 - classmethod validate(value: Any) Model¶
 - property input_keys: List[str]¶
- Return the input keys. - Returns
- List of input keys. 
 
 - property return_values: List[str]¶
- Return values of the agent.