Source code for langchain_community.vectorstores.faiss

from __future__ import annotations

import asyncio
import logging
import operator
import os
import pickle
import uuid
import warnings
from functools import partial
from pathlib import Path
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Sized,
    Tuple,
    Union,
)

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from langchain_community.docstore.base import AddableMixin, Docstore
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores.utils import (
    DistanceStrategy,
    maximal_marginal_relevance,
)

logger = logging.getLogger(__name__)


[docs]def dependable_faiss_import(no_avx2: Optional[bool] = None) -> Any: """ Import faiss if available, otherwise raise error. If FAISS_NO_AVX2 environment variable is set, it will be considered to load FAISS with no AVX2 optimization. Args: no_avx2: Load FAISS strictly with no AVX2 optimization so that the vectorstore is portable and compatible with other devices. """ if no_avx2 is None and "FAISS_NO_AVX2" in os.environ: no_avx2 = bool(os.getenv("FAISS_NO_AVX2")) try: if no_avx2: from faiss import swigfaiss as faiss else: import faiss except ImportError: raise ImportError( "Could not import faiss python package. " "Please install it with `pip install faiss-gpu` (for CUDA supported GPU) " "or `pip install faiss-cpu` (depending on Python version)." ) return faiss
def _len_check_if_sized(x: Any, y: Any, x_name: str, y_name: str) -> None: if isinstance(x, Sized) and isinstance(y, Sized) and len(x) != len(y): raise ValueError( f"{x_name} and {y_name} expected to be equal length but " f"len({x_name})={len(x)} and len({y_name})={len(y)}" ) return
[docs]class FAISS(VectorStore): """`Meta Faiss` vector store. To use, you must have the ``faiss`` python package installed. Example: .. code-block:: python from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS embeddings = OpenAIEmbeddings() texts = ["FAISS is an important library", "LangChain supports FAISS"] faiss = FAISS.from_texts(texts, embeddings) """
[docs] def __init__( self, embedding_function: Union[ Callable[[str], List[float]], Embeddings, ], index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], relevance_score_fn: Optional[Callable[[float], float]] = None, normalize_L2: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE, ): """Initialize with necessary components.""" if not isinstance(embedding_function, Embeddings): logger.warning( "`embedding_function` is expected to be an Embeddings object, support " "for passing in a function will soon be removed." ) self.embedding_function = embedding_function self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id self.distance_strategy = distance_strategy self.override_relevance_score_fn = relevance_score_fn self._normalize_L2 = normalize_L2 if ( self.distance_strategy != DistanceStrategy.EUCLIDEAN_DISTANCE and self._normalize_L2 ): warnings.warn( "Normalizing L2 is not applicable for metric type: {strategy}".format( strategy=self.distance_strategy ) )
@property def embeddings(self) -> Optional[Embeddings]: return ( self.embedding_function if isinstance(self.embedding_function, Embeddings) else None ) def _embed_documents(self, texts: List[str]) -> List[List[float]]: if isinstance(self.embedding_function, Embeddings): return self.embedding_function.embed_documents(texts) else: return [self.embedding_function(text) for text in texts] async def _aembed_documents(self, texts: List[str]) -> List[List[float]]: if isinstance(self.embedding_function, Embeddings): return await self.embedding_function.aembed_documents(texts) else: # return await asyncio.gather( # [self.embedding_function(text) for text in texts] # ) raise Exception( "`embedding_function` is expected to be an Embeddings object, support " "for passing in a function will soon be removed." ) def _embed_query(self, text: str) -> List[float]: if isinstance(self.embedding_function, Embeddings): return self.embedding_function.embed_query(text) else: return self.embedding_function(text) async def _aembed_query(self, text: str) -> List[float]: if isinstance(self.embedding_function, Embeddings): return await self.embedding_function.aembed_query(text) else: # return await self.embedding_function(text) raise Exception( "`embedding_function` is expected to be an Embeddings object, support " "for passing in a function will soon be removed." ) def __add( self, texts: Iterable[str], embeddings: Iterable[List[float]], metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, ) -> List[str]: faiss = dependable_faiss_import() if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) _len_check_if_sized(texts, metadatas, "texts", "metadatas") _metadatas = metadatas or ({} for _ in texts) documents = [ Document(page_content=t, metadata=m) for t, m in zip(texts, _metadatas) ] _len_check_if_sized(documents, embeddings, "documents", "embeddings") _len_check_if_sized(documents, ids, "documents", "ids") # Add to the index. vector = np.array(embeddings, dtype=np.float32) if self._normalize_L2: faiss.normalize_L2(vector) self.index.add(vector) # Add information to docstore and index. ids = ids or [str(uuid.uuid4()) for _ in texts] self.docstore.add({id_: doc for id_, doc in zip(ids, documents)}) starting_len = len(self.index_to_docstore_id) index_to_id = {starting_len + j: id_ for j, id_ in enumerate(ids)} self.index_to_docstore_id.update(index_to_id) return ids
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) embeddings = self._embed_documents(texts) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids)
[docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore asynchronously. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) embeddings = await self._aembed_documents(texts) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids)
[docs] def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add the given texts and embeddings to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ # Embed and create the documents. texts, embeddings = zip(*text_embeddings) return self.__add(texts, embeddings, metadatas=metadatas, ids=ids)
[docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, Any]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. **kwargs: kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity. """ faiss = dependable_faiss_import() vector = np.array([embedding], dtype=np.float32) if self._normalize_L2: faiss.normalize_L2(vector) scores, indices = self.index.search(vector, k if filter is None else fetch_k) docs = [] for j, i in enumerate(indices[0]): if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") if filter is not None: filter = { key: [value] if not isinstance(value, list) else value for key, value in filter.items() } if all(doc.metadata.get(key) in value for key, value in filter.items()): docs.append((doc, scores[0][j])) else: docs.append((doc, scores[0][j])) score_threshold = kwargs.get("score_threshold") if score_threshold is not None: cmp = ( operator.ge if self.distance_strategy in (DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.JACCARD) else operator.le ) docs = [ (doc, similarity) for doc, similarity in docs if cmp(similarity, score_threshold) ] return docs[:k]
[docs] async def asimilarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query asynchronously. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, Any]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. **kwargs: kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity. """ # This is a temporary workaround to make the similarity search asynchronous. func = partial( self.similarity_search_with_score_by_vector, embedding, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. """ embedding = self._embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return docs
[docs] async def asimilarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query asynchronously. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. """ embedding = await self._aembed_query(query) docs = await self.asimilarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return docs
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return [doc for doc, _ in docs_and_scores]
[docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector asynchronously. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. fetch_k: (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns: List of Documents most similar to the embedding. """ docs_and_scores = await self.asimilarity_search_with_score_by_vector( embedding, k, filter=filter, fetch_k=fetch_k, **kwargs, ) return [doc for doc, _ in docs_and_scores]
[docs] def max_marginal_relevance_search_with_score_by_vector( self, embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents and similarity scores selected by maximal marginal relevance and score for each. """ scores, indices = self.index.search( np.array([embedding], dtype=np.float32), fetch_k if filter is None else fetch_k * 2, ) if filter is not None: filtered_indices = [] for i in indices[0]: if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") if all( doc.metadata.get(key) in value if isinstance(value, list) else doc.metadata.get(key) == value for key, value in filter.items() ): filtered_indices.append(i) indices = np.array([filtered_indices]) # -1 happens when not enough docs are returned. embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), embeddings, k=k, lambda_mult=lambda_mult, ) selected_indices = [indices[0][i] for i in mmr_selected] selected_scores = [scores[0][i] for i in mmr_selected] docs_and_scores = [] for i, score in zip(selected_indices, selected_scores): if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs_and_scores.append((doc, score)) return docs_and_scores
[docs] async def amax_marginal_relevance_search_with_score_by_vector( self, embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores selected using the maximal marginal relevance asynchronously. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents and similarity scores selected by maximal marginal relevance and score for each. """ # This is a temporary workaround to make the similarity search asynchronous. func = partial( self.max_marginal_relevance_search_with_score_by_vector, embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter, ) return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter ) return [doc for doc, _ in docs_and_scores]
[docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance asynchronously. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ docs_and_scores = ( await self.amax_marginal_relevance_search_with_score_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter ) ) return [doc for doc, _ in docs_and_scores]
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by ID. These are the IDs in the vectorstore. Args: ids: List of ids to delete. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ if ids is None: raise ValueError("No ids provided to delete.") missing_ids = set(ids).difference(self.index_to_docstore_id.values()) if missing_ids: raise ValueError( f"Some specified ids do not exist in the current store. Ids not found: " f"{missing_ids}" ) reversed_index = {id_: idx for idx, id_ in self.index_to_docstore_id.items()} index_to_delete = [reversed_index[id_] for id_ in ids] self.index.remove_ids(np.array(index_to_delete, dtype=np.int64)) self.docstore.delete(ids) remaining_ids = [ id_ for i, id_ in sorted(self.index_to_docstore_id.items()) if i not in index_to_delete ] self.index_to_docstore_id = {i: id_ for i, id_ in enumerate(remaining_ids)} return True
[docs] def merge_from(self, target: FAISS) -> None: """Merge another FAISS object with the current one. Add the target FAISS to the current one. Args: target: FAISS object you wish to merge into the current one Returns: None. """ if not isinstance(self.docstore, AddableMixin): raise ValueError("Cannot merge with this type of docstore") # Numerical index for target docs are incremental on existing ones starting_len = len(self.index_to_docstore_id) # Merge two IndexFlatL2 self.index.merge_from(target.index) # Get id and docs from target FAISS object full_info = [] for i, target_id in target.index_to_docstore_id.items(): doc = target.docstore.search(target_id) if not isinstance(doc, Document): raise ValueError("Document should be returned") full_info.append((starting_len + i, target_id, doc)) # Add information to docstore and index_to_docstore_id. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id)
@classmethod def __from( cls, texts: Iterable[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, normalize_L2: bool = False, distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE, **kwargs: Any, ) -> FAISS: faiss = dependable_faiss_import() if distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: index = faiss.IndexFlatIP(len(embeddings[0])) else: # Default to L2, currently other metric types not initialized. index = faiss.IndexFlatL2(len(embeddings[0])) vecstore = cls( embedding, index, InMemoryDocstore(), {}, normalize_L2=normalize_L2, distance_strategy=distance_strategy, **kwargs, ) vecstore.__add(texts, embeddings, metadatas=metadatas, ids=ids) return vecstore
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, **kwargs, )
[docs] @classmethod async def afrom_texts( cls, texts: list[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents asynchronously. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = await FAISS.afrom_texts(texts, embeddings) """ embeddings = await embedding.aembed_documents(texts) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, **kwargs, )
[docs] @classmethod def from_embeddings( cls, text_embeddings: Iterable[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = zip(texts, text_embeddings) faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, **kwargs, )
[docs] @classmethod async def afrom_embeddings( cls, text_embeddings: Iterable[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[Iterable[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents asynchronously.""" return cls.from_embeddings( text_embeddings, embedding, metadatas=metadatas, ids=ids, **kwargs, )
[docs] def save_local(self, folder_path: str, index_name: str = "index") -> None: """Save FAISS index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to save index, docstore, and index_to_docstore_id to. index_name: for saving with a specific index file name """ path = Path(folder_path) path.mkdir(exist_ok=True, parents=True) # save index separately since it is not picklable faiss = dependable_faiss_import() faiss.write_index( self.index, str(path / "{index_name}.faiss".format(index_name=index_name)) ) # save docstore and index_to_docstore_id with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f: pickle.dump((self.docstore, self.index_to_docstore_id), f)
[docs] @classmethod def load_local( cls, folder_path: str, embeddings: Embeddings, index_name: str = "index", **kwargs: Any, ) -> FAISS: """Load FAISS index, docstore, and index_to_docstore_id from disk. Args: folder_path: folder path to load index, docstore, and index_to_docstore_id from. embeddings: Embeddings to use when generating queries index_name: for saving with a specific index file name asynchronous: whether to use async version or not """ path = Path(folder_path) # load index separately since it is not picklable faiss = dependable_faiss_import() index = faiss.read_index( str(path / "{index_name}.faiss".format(index_name=index_name)) ) # load docstore and index_to_docstore_id with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f: docstore, index_to_docstore_id = pickle.load(f) return cls(embeddings, index, docstore, index_to_docstore_id, **kwargs)
[docs] def serialize_to_bytes(self) -> bytes: """Serialize FAISS index, docstore, and index_to_docstore_id to bytes.""" return pickle.dumps((self.index, self.docstore, self.index_to_docstore_id))
[docs] @classmethod def deserialize_from_bytes( cls, serialized: bytes, embeddings: Embeddings, **kwargs: Any, ) -> FAISS: """Deserialize FAISS index, docstore, and index_to_docstore_id from bytes.""" index, docstore, index_to_docstore_id = pickle.loads(serialized) return cls(embeddings, index, docstore, index_to_docstore_id, **kwargs)
def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided in # vectorstore constructor if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: return self._max_inner_product_relevance_score_fn elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: # Default behavior is to use euclidean distance relevancy return self._euclidean_relevance_score_fn elif self.distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn else: raise ValueError( "Unknown distance strategy, must be cosine, max_inner_product," " or euclidean" ) def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores on a scale from 0 to 1.""" # Pop score threshold so that only relevancy scores, not raw scores, are # filtered. relevance_score_fn = self._select_relevance_score_fn() if relevance_score_fn is None: raise ValueError( "normalize_score_fn must be provided to" " FAISS constructor to normalize scores" ) docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) docs_and_rel_scores = [ (doc, relevance_score_fn(score)) for doc, score in docs_and_scores ] return docs_and_rel_scores async def _asimilarity_search_with_relevance_scores( self, query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and their similarity scores on a scale from 0 to 1.""" # Pop score threshold so that only relevancy scores, not raw scores, are # filtered. relevance_score_fn = self._select_relevance_score_fn() if relevance_score_fn is None: raise ValueError( "normalize_score_fn must be provided to" " FAISS constructor to normalize scores" ) docs_and_scores = await self.asimilarity_search_with_score( query, k=k, filter=filter, fetch_k=fetch_k, **kwargs, ) docs_and_rel_scores = [ (doc, relevance_score_fn(score)) for doc, score in docs_and_scores ] return docs_and_rel_scores