Source code for langchain_community.llms.yandex

from typing import Any, Dict, List, Mapping, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.load.serializable import Serializable
from langchain_core.pydantic_v1 import root_validator
from langchain_core.utils import get_from_dict_or_env

from langchain_community.llms.utils import enforce_stop_tokens


class _BaseYandexGPT(Serializable):
    iam_token: str = ""
    """Yandex Cloud IAM token for service account
    with the `ai.languageModels.user` role"""
    api_key: str = ""
    """Yandex Cloud Api Key for service account
    with the `ai.languageModels.user` role"""
    model_name: str = "general"
    """Model name to use."""
    temperature: float = 0.6
    """What sampling temperature to use.
    Should be a double number between 0 (inclusive) and 1 (inclusive)."""
    max_tokens: int = 7400
    """Sets the maximum limit on the total number of tokens
    used for both the input prompt and the generated response.
    Must be greater than zero and not exceed 7400 tokens."""
    stop: Optional[List[str]] = None
    """Sequences when completion generation will stop."""
    url: str = "llm.api.cloud.yandex.net:443"
    """The url of the API."""

    @property
    def _llm_type(self) -> str:
        return "yandex_gpt"

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that iam token exists in environment."""

        iam_token = get_from_dict_or_env(values, "iam_token", "YC_IAM_TOKEN", "")
        values["iam_token"] = iam_token
        api_key = get_from_dict_or_env(values, "api_key", "YC_API_KEY", "")
        values["api_key"] = api_key
        if api_key == "" and iam_token == "":
            raise ValueError("Either 'YC_API_KEY' or 'YC_IAM_TOKEN' must be provided.")
        return values


[docs]class YandexGPT(_BaseYandexGPT, LLM): """Yandex large language models. To use, you should have the ``yandexcloud`` python package installed. There are two authentication options for the service account with the ``ai.languageModels.user`` role: - You can specify the token in a constructor parameter `iam_token` or in an environment variable `YC_IAM_TOKEN`. - You can specify the key in a constructor parameter `api_key` or in an environment variable `YC_API_KEY`. Example: .. code-block:: python from langchain_community.llms import YandexGPT yandex_gpt = YandexGPT(iam_token="t1.9eu...") """ @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "temperature": self.temperature, "max_tokens": self.max_tokens, "stop": self.stop, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Yandex GPT model and return the output. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = YandexGPT("Tell me a joke.") """ try: import grpc from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import InstructRequest from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import ( TextGenerationServiceStub, ) except ImportError as e: raise ImportError( "Please install YandexCloud SDK" " with `pip install yandexcloud`." ) from e channel_credentials = grpc.ssl_channel_credentials() channel = grpc.secure_channel(self.url, channel_credentials) request = InstructRequest( model=self.model_name, request_text=prompt, generation_options=GenerationOptions( temperature=DoubleValue(value=self.temperature), max_tokens=Int64Value(value=self.max_tokens), ), ) stub = TextGenerationServiceStub(channel) if self.iam_token: metadata = (("authorization", f"Bearer {self.iam_token}"),) else: metadata = (("authorization", f"Api-Key {self.api_key}"),) res = stub.Instruct(request, metadata=metadata) text = list(res)[0].alternatives[0].text if stop is not None: text = enforce_stop_tokens(text, stop) return text async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Async call the Yandex GPT model and return the output. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. """ try: import asyncio import grpc from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import ( InstructRequest, InstructResponse, ) from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import ( TextGenerationAsyncServiceStub, ) from yandex.cloud.operation.operation_service_pb2 import GetOperationRequest from yandex.cloud.operation.operation_service_pb2_grpc import ( OperationServiceStub, ) except ImportError as e: raise ImportError( "Please install YandexCloud SDK" " with `pip install yandexcloud`." ) from e operation_api_url = "operation.api.cloud.yandex.net:443" channel_credentials = grpc.ssl_channel_credentials() async with grpc.aio.secure_channel(self.url, channel_credentials) as channel: request = InstructRequest( model=self.model_name, request_text=prompt, generation_options=GenerationOptions( temperature=DoubleValue(value=self.temperature), max_tokens=Int64Value(value=self.max_tokens), ), ) stub = TextGenerationAsyncServiceStub(channel) if self.iam_token: metadata = (("authorization", f"Bearer {self.iam_token}"),) else: metadata = (("authorization", f"Api-Key {self.api_key}"),) operation = await stub.Instruct(request, metadata=metadata) async with grpc.aio.secure_channel( operation_api_url, channel_credentials ) as operation_channel: operation_stub = OperationServiceStub(operation_channel) while not operation.done: await asyncio.sleep(1) operation_request = GetOperationRequest(operation_id=operation.id) operation = await operation_stub.Get( operation_request, metadata=metadata ) instruct_response = InstructResponse() operation.response.Unpack(instruct_response) text = instruct_response.alternatives[0].text if stop is not None: text = enforce_stop_tokens(text, stop) return text