Source code for langchain_community.llms.titan_takeoff_pro
from typing import Any, Iterator, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from requests.exceptions import ConnectionError
from langchain_community.llms.utils import enforce_stop_tokens
[docs]class TitanTakeoffPro(LLM):
base_url: Optional[str] = "http://localhost:3000"
"""Specifies the baseURL to use for the Titan Takeoff Pro API.
Default = http://localhost:3000.
"""
max_new_tokens: Optional[int] = None
"""Maximum tokens generated."""
min_new_tokens: Optional[int] = None
"""Minimum tokens generated."""
sampling_topk: Optional[int] = None
"""Sample predictions from the top K most probable candidates."""
sampling_topp: Optional[float] = None
"""Sample from predictions whose cumulative probability exceeds this value.
"""
sampling_temperature: Optional[float] = None
"""Sample with randomness. Bigger temperatures are associated with
more randomness and 'creativity'.
"""
repetition_penalty: Optional[float] = None
"""Penalise the generation of tokens that have been generated before.
Set to > 1 to penalize.
"""
regex_string: Optional[str] = None
"""A regex string for constrained generation."""
no_repeat_ngram_size: Optional[int] = None
"""Prevent repetitions of ngrams of this size. Default = 0 (turned off)."""
streaming: bool = False
"""Whether to stream the output. Default = False."""
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Titan Takeoff Server (Pro)."""
return {
**(
{"regex_string": self.regex_string}
if self.regex_string is not None
else {}
),
**(
{"sampling_temperature": self.sampling_temperature}
if self.sampling_temperature is not None
else {}
),
**(
{"sampling_topp": self.sampling_topp}
if self.sampling_topp is not None
else {}
),
**(
{"repetition_penalty": self.repetition_penalty}
if self.repetition_penalty is not None
else {}
),
**(
{"max_new_tokens": self.max_new_tokens}
if self.max_new_tokens is not None
else {}
),
**(
{"min_new_tokens": self.min_new_tokens}
if self.min_new_tokens is not None
else {}
),
**(
{"sampling_topk": self.sampling_topk}
if self.sampling_topk is not None
else {}
),
**(
{"no_repeat_ngram_size": self.no_repeat_ngram_size}
if self.no_repeat_ngram_size is not None
else {}
),
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "titan_takeoff_pro"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Titan Takeoff (Pro) generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
try:
if self.streaming:
text_output = ""
for chunk in self._stream(
prompt=prompt,
stop=stop,
run_manager=run_manager,
):
text_output += chunk.text
return text_output
url = f"{self.base_url}/generate"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params)
response.raise_for_status()
response.encoding = "utf-8"
text = ""
if "text" in response.json():
text = response.json()["text"]
text = text.replace("</s>", "")
else:
raise ValueError("Something went wrong.")
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
except ConnectionError:
raise ConnectionError(
"Could not connect to Titan Takeoff (Pro) server. \
Please make sure that the server is running."
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Call out to Titan Takeoff (Pro) stream endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
url = f"{self.base_url}/generate_stream"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params, stream=True)
response.encoding = "utf-8"
buffer = ""
for text in response.iter_content(chunk_size=1, decode_unicode=True):
buffer += text
if "data:" in buffer:
# Remove the first instance of "data:" from the buffer.
if buffer.startswith("data:"):
buffer = ""
if len(buffer.split("data:", 1)) == 2:
content, _ = buffer.split("data:", 1)
buffer = content.rstrip("\n")
# Trim the buffer to only have content after the "data:" part.
if buffer: # Ensure that there's content to process.
chunk = GenerationChunk(text=buffer)
buffer = "" # Reset buffer for the next set of data.
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
# Yield any remaining content in the buffer.
if buffer:
chunk = GenerationChunk(text=buffer.replace("</s>", ""))
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"base_url": self.base_url, **{}, **self._default_params}