Source code for langchain_community.embeddings.jina
from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.utils import get_from_dict_or_env
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
[docs]class JinaEmbeddings(BaseModel, Embeddings):
"""Jina embedding models."""
session: Any #: :meta private:
model_name: str = "jina-embeddings-v2-base-en"
jina_api_key: Optional[str] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
try:
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
except ValueError as original_exc:
try:
jina_api_key = get_from_dict_or_env(
values, "jina_auth_token", "JINA_AUTH_TOKEN"
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {jina_api_key}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["session"] = session
return values
def _embed(self, texts: List[str]) -> List[List[float]]:
# Call Jina AI Embedding API
resp = self.session.post( # type: ignore
JINA_API_URL, json={"input": texts, "model": self.model_name}
).json()
if "data" not in resp:
raise RuntimeError(resp["detail"])
embeddings = resp["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Jina's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self._embed(texts)
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Jina's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed([text])[0]