"""Callback Handler that prints to std out."""
from typing import Any, Dict, List
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
MODEL_COST_PER_1K_TOKENS = {
# GPT-4 input
"gpt-4": 0.03,
"gpt-4-0314": 0.03,
"gpt-4-0613": 0.03,
"gpt-4-32k": 0.06,
"gpt-4-32k-0314": 0.06,
"gpt-4-32k-0613": 0.06,
"gpt-4-vision-preview": 0.01,
"gpt-4-1106-preview": 0.01,
# GPT-4 output
"gpt-4-completion": 0.06,
"gpt-4-0314-completion": 0.06,
"gpt-4-0613-completion": 0.06,
"gpt-4-32k-completion": 0.12,
"gpt-4-32k-0314-completion": 0.12,
"gpt-4-32k-0613-completion": 0.12,
"gpt-4-vision-preview-completion": 0.03,
"gpt-4-1106-preview-completion": 0.03,
# GPT-3.5 input
"gpt-3.5-turbo": 0.0015,
"gpt-3.5-turbo-0301": 0.0015,
"gpt-3.5-turbo-0613": 0.0015,
"gpt-3.5-turbo-1106": 0.001,
"gpt-3.5-turbo-instruct": 0.0015,
"gpt-3.5-turbo-16k": 0.003,
"gpt-3.5-turbo-16k-0613": 0.003,
# GPT-3.5 output
"gpt-3.5-turbo-completion": 0.002,
"gpt-3.5-turbo-0301-completion": 0.002,
"gpt-3.5-turbo-0613-completion": 0.002,
"gpt-3.5-turbo-1106-completion": 0.002,
"gpt-3.5-turbo-instruct-completion": 0.002,
"gpt-3.5-turbo-16k-completion": 0.004,
"gpt-3.5-turbo-16k-0613-completion": 0.004,
# Azure GPT-35 input
"gpt-35-turbo": 0.0015, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0301": 0.0015, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0613": 0.0015,
"gpt-35-turbo-instruct": 0.0015,
"gpt-35-turbo-16k": 0.003,
"gpt-35-turbo-16k-0613": 0.003,
# Azure GPT-35 output
"gpt-35-turbo-completion": 0.002, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0301-completion": 0.002, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0613-completion": 0.002,
"gpt-35-turbo-instruct-completion": 0.002,
"gpt-35-turbo-16k-completion": 0.004,
"gpt-35-turbo-16k-0613-completion": 0.004,
# Others
"text-ada-001": 0.0004,
"ada": 0.0004,
"text-babbage-001": 0.0005,
"babbage": 0.0005,
"text-curie-001": 0.002,
"curie": 0.002,
"text-davinci-003": 0.02,
"text-davinci-002": 0.02,
"code-davinci-002": 0.02,
# Fine Tuned input
"babbage-002-finetuned": 0.0016,
"davinci-002-finetuned": 0.012,
"gpt-3.5-turbo-0613-finetuned": 0.012,
# Fine Tuned output
"babbage-002-finetuned-completion": 0.0016,
"davinci-002-finetuned-completion": 0.012,
"gpt-3.5-turbo-0613-finetuned-completion": 0.016,
# Azure Fine Tuned input
"babbage-002-azure-finetuned": 0.0004,
"davinci-002-azure-finetuned": 0.002,
"gpt-35-turbo-0613-azure-finetuned": 0.0015,
# Azure Fine Tuned output
"babbage-002-azure-finetuned-completion": 0.0004,
"davinci-002-azure-finetuned-completion": 0.002,
"gpt-35-turbo-0613-azure-finetuned-completion": 0.002,
# Legacy fine-tuned models
"ada-finetuned-legacy": 0.0016,
"babbage-finetuned-legacy": 0.0024,
"curie-finetuned-legacy": 0.012,
"davinci-finetuned-legacy": 0.12,
}
[docs]def standardize_model_name(
model_name: str,
is_completion: bool = False,
) -> str:
"""
Standardize the model name to a format that can be used in the OpenAI API.
Args:
model_name: Model name to standardize.
is_completion: Whether the model is used for completion or not.
Defaults to False.
Returns:
Standardized model name.
"""
model_name = model_name.lower()
if ".ft-" in model_name:
model_name = model_name.split(".ft-")[0] + "-azure-finetuned"
if ":ft-" in model_name:
model_name = model_name.split(":")[0] + "-finetuned-legacy"
if "ft:" in model_name:
model_name = model_name.split(":")[1] + "-finetuned"
if is_completion and (
model_name.startswith("gpt-4")
or model_name.startswith("gpt-3.5")
or model_name.startswith("gpt-35")
or ("finetuned" in model_name and "legacy" not in model_name)
):
return model_name + "-completion"
else:
return model_name
[docs]def get_openai_token_cost_for_model(
model_name: str, num_tokens: int, is_completion: bool = False
) -> float:
"""
Get the cost in USD for a given model and number of tokens.
Args:
model_name: Name of the model
num_tokens: Number of tokens.
is_completion: Whether the model is used for completion or not.
Defaults to False.
Returns:
Cost in USD.
"""
model_name = standardize_model_name(model_name, is_completion=is_completion)
if model_name not in MODEL_COST_PER_1K_TOKENS:
raise ValueError(
f"Unknown model: {model_name}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(MODEL_COST_PER_1K_TOKENS.keys())
)
return MODEL_COST_PER_1K_TOKENS[model_name] * (num_tokens / 1000)
[docs]class OpenAICallbackHandler(BaseCallbackHandler):
"""Callback Handler that tracks OpenAI info."""
total_tokens: int = 0
prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
total_cost: float = 0.0
def __repr__(self) -> str:
return (
f"Tokens Used: {self.total_tokens}\n"
f"\tPrompt Tokens: {self.prompt_tokens}\n"
f"\tCompletion Tokens: {self.completion_tokens}\n"
f"Successful Requests: {self.successful_requests}\n"
f"Total Cost (USD): ${self.total_cost}"
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
[docs] def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Print out the prompts."""
pass
[docs] def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Print out the token."""
pass
[docs] def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Collect token usage."""
if response.llm_output is None:
return None
self.successful_requests += 1
if "token_usage" not in response.llm_output:
return None
token_usage = response.llm_output["token_usage"]
completion_tokens = token_usage.get("completion_tokens", 0)
prompt_tokens = token_usage.get("prompt_tokens", 0)
model_name = standardize_model_name(response.llm_output.get("model_name", ""))
if model_name in MODEL_COST_PER_1K_TOKENS:
completion_cost = get_openai_token_cost_for_model(
model_name, completion_tokens, is_completion=True
)
prompt_cost = get_openai_token_cost_for_model(model_name, prompt_tokens)
self.total_cost += prompt_cost + completion_cost
self.total_tokens += token_usage.get("total_tokens", 0)
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
def __copy__(self) -> "OpenAICallbackHandler":
"""Return a copy of the callback handler."""
return self
def __deepcopy__(self, memo: Any) -> "OpenAICallbackHandler":
"""Return a deep copy of the callback handler."""
return self