Source code for langchain.agents.conversational_chat.base

"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations

from typing import Any, List, Optional, Sequence, Tuple

from langchain_core.agents import AgentAction
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
)
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool

from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser
from langchain.agents.conversational_chat.prompt import (
    PREFIX,
    SUFFIX,
    TEMPLATE_TOOL_RESPONSE,
)
from langchain.agents.utils import validate_tools_single_input
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain


[docs]class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) template_tool_response: str = TEMPLATE_TOOL_RESPONSE @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ConvoOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools)
[docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = human_message.format( format_instructions=_output_parser.get_format_instructions() ) final_prompt = format_instructions.format( tool_names=tool_names, tools=tool_strings ) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=self.template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts
[docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )