langchain_community.vectorstores.timescalevector
.TimescaleVector¶
- class langchain_community.vectorstores.timescalevector.TimescaleVector(service_url: str, embedding: Embeddings, collection_name: str = 'langchain_store', num_dimensions: int = 1536, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None, **kwargs: Any)[source]¶
VectorStore implementation using the timescale vector client to store vectors in Postgres.
To use, you should have the
timescale_vector
python package installed.- Parameters
service_url – Service url on timescale cloud.
embedding – Any embedding function implementing langchain.embeddings.base.Embeddings interface.
collection_name – The name of the collection to use. (default: langchain_store) This will become the table name used for the collection.
distance_strategy – The distance strategy to use. (default: COSINE)
pre_delete_collection – If True, will delete the collection if it exists. (default: False). Useful for testing.
Example
from langchain_community.vectorstores import TimescaleVector from langchain_community.embeddings.openai import OpenAIEmbeddings SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = TimescaleVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, )
Attributes
DEFAULT_INDEX_TYPE
embeddings
Access the query embedding object if available.
Methods
__init__
(service_url, embedding[, ...])aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_embeddings
(texts, embeddings[, ...])Add embeddings to the vectorstore.
aadd_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_embeddings
(texts, embeddings[, ...])Add embeddings to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_embeddings
(text_embeddings, embedding)Construct TimescaleVector wrapper from raw documents and pre- generated embeddings.
afrom_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k, filter, ...])Run similarity search with TimescaleVector with distance.
asimilarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1], asynchronously.
asimilarity_search_with_score
(query[, k, ...])Return docs most similar to query.
create_index
([index_type])date_to_range_filter
(**kwargs)delete
([ids])Delete by vector ID or other criteria.
delete_by_metadata
(filter, **kwargs)Delete by vector ID or other criteria.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding)Construct TimescaleVector wrapper from raw documents and pre- generated embeddings.
from_existing_index
(embedding[, ...])Get instance of an existing TimescaleVector store.This method will return the instance of the store without inserting any new embeddings
from_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from texts and embeddings.
get_service_url
(kwargs)max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
service_url_from_db_params
(host, port, ...)Return connection string from database parameters.
similarity_search
(query[, k, filter, predicates])Run similarity search with TimescaleVector with distance.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)- __init__(service_url: str, embedding: Embeddings, collection_name: str = 'langchain_store', num_dimensions: int = 1536, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None, **kwargs: Any) None [source]¶
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- async aadd_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add embeddings to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
embeddings – List of list of embedding vectors.
metadatas – List of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Run more documents through the embeddings and add to the vectorstore.
- Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns
List of IDs of the added texts.
- Return type
List[str]
- add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add embeddings to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
embeddings – List of list of embedding vectors.
metadatas – List of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
kwargs – vectorstore specific parameters
- Returns
List of ids from adding the texts into the vectorstore.
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) TimescaleVector [source]¶
Construct TimescaleVector wrapper from raw documents and pre- generated embeddings.
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable.
Example
from langchain_community.vectorstores import TimescaleVector from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings)
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) TimescaleVector [source]¶
Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with TimescaleVector with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query.
- async asimilarity_search_by_vector(embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1], asynchronously.
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- async asimilarity_search_with_score(query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each
- async asimilarity_search_with_score_by_vector(embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- create_index(index_type: Union[IndexType, str] = IndexType.TIMESCALE_VECTOR, **kwargs: Any) None [source]¶
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- delete_by_metadata(filter: Union[Dict[str, str], List[Dict[str, str]]], **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) TimescaleVector [source]¶
Construct TimescaleVector wrapper from raw documents and pre- generated embeddings.
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable.
Example
from langchain_community.vectorstores import TimescaleVector from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings)
- classmethod from_existing_index(embedding: Embeddings, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, **kwargs: Any) TimescaleVector [source]¶
Get instance of an existing TimescaleVector store.This method will return the instance of the store without inserting any new embeddings
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) TimescaleVector [source]¶
Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
- Returns
List of Documents selected by maximal marginal relevance.
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using specified search type.
- classmethod service_url_from_db_params(host: str, port: int, database: str, user: str, password: str) str [source]¶
Return connection string from database parameters.
- similarity_search(query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with TimescaleVector with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query.
- similarity_search_by_vector(embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query vector.
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each