langchain_community.utilities.tensorflow_datasets.TensorflowDatasetsΒΆ
- class langchain_community.utilities.tensorflow_datasets.TensorflowDatasets[source]ΒΆ
- Bases: - BaseModel- Access to the TensorFlow Datasets. - The Current implementation can work only with datasets that fit in a memory. - TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data.Datasets. To get started see the Guide: https://www.tensorflow.org/datasets/overview and the list of datasets: https://www.tensorflow.org/datasets/catalog/ - overview#all_datasets - You have to provide the sample_to_document_function: a function that
- a sample from the dataset-specific format to the Document. 
 - dataset_nameΒΆ
- the name of the dataset to load 
 - split_nameΒΆ
- the name of the split to load. Defaults to βtrainβ. 
 - load_max_docsΒΆ
- a limit to the number of loaded documents. Defaults to 100. 
 - sample_to_document_functionΒΆ
- a function that converts a dataset sample to a Document 
 - Example - from langchain_community.utilities import TensorflowDatasets def mlqaen_example_to_document(example: dict) -> Document: return Document( page_content=decode_to_str(example["context"]), metadata={ "id": decode_to_str(example["id"]), "title": decode_to_str(example["title"]), "question": decode_to_str(example["question"]), "answer": decode_to_str(example["answers"]["text"][0]), }, ) tsds_client = TensorflowDatasets( dataset_name="mlqa/en", split_name="train", load_max_docs=MAX_DOCS, sample_to_document_function=mlqaen_example_to_document, ) - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - param dataset_name: str = ''ΒΆ
 - param load_max_docs: int = 100ΒΆ
 - param sample_to_document_function: Optional[Callable[[Dict], langchain_core.documents.base.Document]] = NoneΒΆ
 - param split_name: str = 'train'ΒΆ
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) ModelΒΆ
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values 
 - copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) ModelΒΆ
- Duplicate a model, optionally choose which fields to include, exclude and change. - Parameters
- include β fields to include in new model 
- exclude β fields to exclude from new model, as with values this takes precedence over include 
- update β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data 
- deep β set to True to make a deep copy of the model 
 
- Returns
- new model instance 
 
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAnyΒΆ
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. 
 - classmethod from_orm(obj: Any) ModelΒΆ
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicodeΒΆ
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). 
 - lazy_load() Iterator[Document][source]ΒΆ
- Download a selected dataset lazily. - Returns: an iterator of Documents. 
 - classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
 - classmethod parse_obj(obj: Any) ModelΒΆ
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) ModelΒΆ
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAnyΒΆ
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicodeΒΆ
 - classmethod update_forward_refs(**localns: Any) NoneΒΆ
- Try to update ForwardRefs on fields based on this Model, globalns and localns. 
 - classmethod validate(value: Any) ModelΒΆ