langchain_community.embeddings.vertexai
.VertexAIEmbeddings¶
- class langchain_community.embeddings.vertexai.VertexAIEmbeddings[source]¶
Bases:
_VertexAICommon
,Embeddings
Google Cloud VertexAI embedding models.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param credentials: Any = None¶
The default custom credentials (google.auth.credentials.Credentials) to use
- param location: str = 'us-central1'¶
The default location to use when making API calls.
- param max_output_tokens: int = 128¶
Token limit determines the maximum amount of text output from one prompt.
- param max_retries: int = 6¶
The maximum number of retries to make when generating.
- param model_name: str = 'textembedding-gecko'¶
Underlying model name.
- param n: int = 1¶
How many completions to generate for each prompt.
- param project: Optional[str] = None¶
The default GCP project to use when making Vertex API calls.
- param request_parallelism: int = 5¶
The amount of parallelism allowed for requests issued to VertexAI models.
- param stop: Optional[List[str]] = None¶
Optional list of stop words to use when generating.
- param streaming: bool = False¶
Whether to stream the results or not.
- param temperature: float = 0.0¶
Sampling temperature, it controls the degree of randomness in token selection.
- param top_k: int = 40¶
How the model selects tokens for output, the next token is selected from
- param top_p: float = 0.95¶
Tokens are selected from most probable to least until the sum of their
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- embed_documents(texts: List[str], batch_size: int = 5) List[List[float]] [source]¶
Embed a list of strings. Vertex AI currently sets a max batch size of 5 strings.
- Parameters
texts – List[str] The list of strings to embed.
batch_size – [int] The batch size of embeddings to send to the model
- Returns
List of embeddings, one for each text.
- embed_query(text: str) List[float] [source]¶
Embed a text.
- Parameters
text – The text to embed.
- Returns
Embedding for the text.
- classmethod from_orm(obj: Any) Model ¶
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_obj(obj: Any) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ¶
- property is_codey_model: bool¶
- task_executor: ClassVar[Optional[Executor]] = FieldInfo(exclude=True, extra={})¶