langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings¶

class langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings[source]¶

Bases: OpenAIEmbeddings

Azure OpenAI Embeddings API.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param azure_ad_token: Union[str, None] = None¶

Your Azure Active Directory token.

Automatically inferred from env var AZURE_OPENAI_AD_TOKEN if not provided.

For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.

param azure_ad_token_provider: Union[str, None] = None¶

A function that returns an Azure Active Directory token.

Will be invoked on every request.

param azure_endpoint: Union[str, None] = None¶

Your Azure endpoint, including the resource.

Automatically inferred from env var AZURE_OPENAI_ENDPOINT if not provided.

Example: https://example-resource.azure.openai.com/

param chunk_size: int = 1000¶

Maximum number of texts to embed in each batch

param default_headers: Union[Mapping[str, str], None] = None¶
param default_query: Union[Mapping[str, object], None] = None¶
param deployment: Optional[str] = None (alias 'azure_deployment')¶

A model deployment.

If given sets the base client URL to include /deployments/{azure_deployment}. Note: this means you won’t be able to use non-deployment endpoints.

param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
param embedding_ctx_length: int = 8191¶

The maximum number of tokens to embed at once.

param headers: Any = None¶
param http_client: Union[Any, None] = None¶

Optional httpx.Client.

param max_retries: int = 2¶

Maximum number of retries to make when generating.

param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶

Holds any model parameters valid for create call not explicitly specified.

param openai_api_base: Optional[str] = None (alias 'base_url')¶

Base URL path for API requests, leave blank if not using a proxy or service emulator.

param openai_api_key: Union[str, None] = None (alias 'api_key')¶

Automatically inferred from env var AZURE_OPENAI_API_KEY if not provided.

param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None (alias 'api_version')¶

Automatically inferred from env var OPENAI_API_VERSION if not provided.

param openai_organization: Optional[str] = None (alias 'organization')¶

Automatically inferred from env var OPENAI_ORG_ID if not provided.

param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')¶

Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.

param retry_max_seconds: int = 20¶

Max number of seconds to wait between retries

param retry_min_seconds: int = 4¶

Min number of seconds to wait between retries

param show_progress_bar: bool = False¶

Whether to show a progress bar when embedding.

param skip_empty: bool = False¶

Whether to skip empty strings when embedding or raise an error. Defaults to not skipping.

param tiktoken_enabled: bool = True¶

Set this to False for non-OpenAI implementations of the embeddings API, e.g. the –extensions openai extension for text-generation-webui

param tiktoken_model_name: Optional[str] = None¶

The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.

param validate_base_url: bool = True¶
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]]¶

Call out to OpenAI’s embedding endpoint async for embedding search docs.

Parameters
  • texts – The list of texts to embed.

  • chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class.

Returns

List of embeddings, one for each text.

async aembed_query(text: str) List[float]¶

Call out to OpenAI’s embedding endpoint async for embedding query text.

Parameters

text – The text to embed.

Returns

Embedding for the text.

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model¶

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model¶

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny¶

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

embed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]]¶

Call out to OpenAI’s embedding endpoint for embedding search docs.

Parameters
  • texts – The list of texts to embed.

  • chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class.

Returns

List of embeddings, one for each text.

embed_query(text: str) List[float]¶

Call out to OpenAI’s embedding endpoint for embedding query text.

Parameters

text – The text to embed.

Returns

Embedding for the text.

classmethod from_orm(obj: Any) Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode¶

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
classmethod parse_obj(obj: Any) Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode¶
classmethod update_forward_refs(**localns: Any) None¶

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) Model¶